
 Embedded Performance, Inc.

P/N 0380-0163-10 Rev 2.01

MAJIC
User’s Manual

November, 2002

EPI has made every attempt to ensure that the information in this document is accurate and complete. However, EPI
assumes no responsibility for any errors, omissions, or for any consequences resulting from the use of the information
included herein or the equipment it accompanies. EPI reserves the right to make changes in its products and
specifications at any time without notice.

Any software described in this document is furnished under a license or non-disclosure agreement. It is against the law to
copy this software on magnetic tape, disk, or other medium for any purpose other than the licensee's personal use.

Embedded Performance, Incorporated
606 Valley Way
Milpitas, California 95035
USA
(408) 957-0350
www.epitools.com

Acknowledgments:

MIPS, MIPS16, MIPS32, R3000, R4000, and RISC/os are trademarks of MIPS Technologies Inc.
ARM, ARM7, ARM9, and Thumb are trademarks of ARM Ltd.
IBM and PC-AT are trademarks of International Business Machines.
MS DOS, Windows, Win32, Windows CE, Platform Builder, and eXDI are trademarks of Microsoft Corporation.
UNIX is a trademark of AT&T.
Ethernet is a trademark of XEROX.
Intel and XScale are trademarks of Intel Corporation.
Tornado is a trademark of Wind River Corporation.
EPI, MAJIC, MAJICMX , MAJICPLUS, EDT, EDTA, EDTM, MONICE, EDB, and EDBICE are trademarks of Embedded
Performance, Inc.
All other trademarks are trademarks of their respective companies.

© 2002 Embedded Performance, Incorporated.
All rights reserved.

Contents
About this Manual . vii
How to Use This Manual. vii
Notational Conventions . viii
Alerts . ix
Service . ix
Getting Help . ix

Chapter 1 Overview . 1
What is the MAJIC Probe? . 1

The MAJIC Probe Models . 2
What is a Debugger? . 2

Chapter 2 Getting Started . 5
Unpacking the System. 5
Hardware Installation . 6

Power Connection . 6
Target Connection . 6

Cable Kits . 6
Mini Probe . 7
Triggers. 8

Host Computer Connections . 8
Serial Connection . 8
Ethernet Setup . 9

System Check-out . 12
Power-on Self-Test . 12
JTAG Bypass Test . 13
Confidence Test . 13

Chapter 3 Debug Environment . 15
Using the Setup Wizard. 15

Choose Your Debugger . 15
Specify Your Project Name . 17
Specify Your Processor . 18
Specify Your Connection Type . 18
Specify Your Configuration Files’ Location . 19
MAJIC User’s Manual 0380-0163-10 Rev 2.01 iii

Contents
Specify Your Destination or Reference Directory . 20
Perform the Setup . 21

Configuration Process . 22
Configuration Files . 22

File Search Order . 22
Startice Command File . 23
Register Definition File. 23

Configuration with MONICE . 27
Configuration with EDBICE . 27
Configuration with Tornado . 28
Configuration with Other Debuggers . 28

Configuring AXD for RealMonitor through RDIMAJIC . 29
Advanced MAJIC Probe Configuration. 30

Custom Initialization File . 31
Configuration Options . 32

Setting Configuration Options . 32
Configuration Option Display. 33

Memory Configuration . 33
MC Display . 34
MC Attributes Table . 34
Setting MC Attributes . 35
Sample MC Table . 36

Chapter 4 MAJIC Probe Debug Services . 39
JTAG Interface. 40

Target Power Management . 40
JTAG Initialization . 40

JTAG Reset . 41
JTAG Chain Dimensions . 41
User JTAG Initialization. 42
TAP Selection . 42

Reset Management. 43
Reset Processor vs. Reset Target . 44
Resetting Internal Peripherals . 44

Accessing Memory and Registers . 44
Display and Enter . 45

Bit Fields . 46
Interactive Mode . 46
MIPS Mini Assembler . 47

Address Expressions . 48
ARM Addresses . 49
MIPS Addresses . 49
Address Operators. 49

Searching Memory . 50
Moving Data . 50
Filling Memory and Registers . 51
Memory Test . 51

Program Execution. 53
Downloading Executable Programs . 53

ELF and COFF Files . 53
iv 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Contents
Hex and Binary Files . 54
Download Performance . 55

Single Stepping . 55
Source Stepping with EDB. 56
Instruction Stepping . 56
Step Forward Mode . 56
Stepping Over Calls . 57
Step Command List in MONICE . 57
Multi-stepping with MONICE . 58

Breakpoints . 58
Pass Counts. 58
Software Breakpoints . 59
Breakpoint Commands in MONICE . 59
Hardware Breakpoints . 60
EPI OS and Semi-Hosting . 61

Starting Execution . 62
Concurrent Debug Mode . 63
Starting Execution with MONICE . 64
Starting Execution with EDBICE. 64

Advanced Topics . 65
Assigning Names . 65
Command Aliases . 65
Debugger Local Variables . 66
Formatted Display . 66
Saving a Session Log . 67
Command (script) Files . 67

Command Parameters. 67
Shift/Unshift Commands . 68
GOTO Command . 68
If Command . 69
+/-Q. 70

Chapter 5 MON Command Language . 71
MON Command Basics. 71
Debug Monitor Commands . 72
Debug Monitor Operands . 124

Chapter 6 Tracing and Trace Points . 141
Trace Buffer. 141

Killing the Trace Buffer . 142
Trace Display Modes . 142

Disassembled Trace Display . 143
Raw Trace Display . 144

Time Stamp . 144
MAJICPLUS Probe Trace Inputs . 145
Trace Display Customization . 147
Filtered Trace Display . 147

Searching for Trace Frames . 148
Trace Display Files . 148

Trace Control. 149
MAJIC User’s Manual 0380-0163-10 Rev 2.01 v

Contents
Trace Enable . 149
Trace Triggers . 149

Trigger Position. 150
Trigger Event . 150

Conditional Tracing . 151
Trace Points . 152

Trace Points in ARM/ETM . 152
Trace Points in EJTAG/PCTrace . 152

Appendix A Ethernet Considerations . 153
Considerations for All Networks . 153

Cabling . 153
Network Addresses . 154

Hardware Address. 154
IP Address . 154
Host Name. 155

Making a Connection . 155
Considerations for PC Networks . 156
Information for Network Administrators. 156

Appendix B Configuration Options . 159

Appendix C MON Quick Reference . 169
MONICE Command Line . 169
MON Commands . 171
Debug Monitor Operands. 175
Command Line Editor . 176
History File . 177

Appendix D MAJIC Probe Update Procedure . 179
Software Update. 179

Production Update . 179
Engineering Update . 180

Firmware Update . 180
Hardware Update . 182

PLD Version . 182
Hardware Update Process . 183

Index . 187
vi 0380-0163-10 Rev 2.01 MAJIC User’s Manual

About this Manual
This is the user manual for the Embedded Performance MAJIC, MAJICMX, and
MAJICPLUS Intelligent Debug Probes. The information in this manual is intended to
serve both new and experienced users. It outlines the installation and operation of the
emulator, and describes how each of the emulator features works. It documents how
the emulator interacts with the processor and target system, and discusses
configuration issues.

Note: Except where explicitly stated to the contrary, the term MAJIC probe refers to
the entire MAJIC Series of intelligent debug probes, but MAJICMX probe and
MAJICPLUS probe refer only to those specific models.

How to Use This Manual
Chapter 1, Overview

Provides a brief overview of the probes and debuggers that comprise the
MAJIC debug environment.

Chapter 2, Getting Started

Provides a listing of the MAJIC intelligent debug probe system components,
and describes how to install, set up, and check out the probe.

Chapter 3, Debug Environment

No two target systems are quite the same. Therefore, certain aspects of the
debug environment may be adjusted to accommodate differences between
target systems. This chapter describes how to configure your debug
environment.

Chapter 4, MAJIC Probe Debug Services

Discusses the MAJIC debug services for debugging both hardware and
software, and for running automated test suites.

Chapter 5, MON Command Language

Describes the MON command language.

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 vii

About this Manual
Chapter 6, Tracing and Trace Points

Discusses the real-time trace and trace point features of the MAJICMX and
MAJICPLUS intelligent debug probes.

Appendix A, Ethernet Considerations

Describes how to connect the MAJIC intelligent debug probe to a new or
existing Ethernet network.

Appendix B, Configuration Options

Provides a reference of all configuration options.

Appendix C, MON Quick Reference

Provides a reference of MON commands and operands.

Appendix D, MAJIC Update Procedure

Provides information on updating the EDT software package, MAJIC
firmware, and MAJICPLUS Trace Control hardware.

Notational Conventions
The following conventions are used in the syntax descriptions of this manual.

Bold face Bold is used for characters that must be entered exactly as
shown.

Italic Is used to indicate a general category of input that will be
described in detail in the command operands section. Italic is
also used when a new term or concept is first introduced, and
for the title of other documents.

monospaced A non-proportional type face is used for the names of
registers, processor and emulator signals, and configuration
options.

<key> Angle brackets indicate that the item enclosed within the
brackets is the name of a special key on the host's keyboard.
Some examples are <enter>, <backspace>, and <esc>.
In some cases several keys must be held down
simultaneously, which is indicated with a dash between them.
For example, <ctrl-C>.

�� � Square brackets are used to enclose an optional operand or
group of operands. The brackets are not to be entered in the
command.

��� Curly braces are used for grouping purposes. These are not to
be entered in the command. They either enclose a list of
alternatives, one of which must be chosen, or they enclose a
group of operands that are to be taken together in the context
of a list of alternatives or a subsequent repetition.
viii 0380-0163-10 Rev 2.01 MAJIC User’s Manual

About this Manual
��� An ellipses (three dots in succession) is used to indicate that
the preceding operand, or group of operands if enclosed by
�� � or ���, may optionally be repeated one or more times.

� A vertical bar is used to indicate that the operand, or group of
operands if enclosed by � �� or ���, on either side of the bar
may be entered, but not both.

�� Two dots in succession indicate the inclusion of sequential
items between given start and stop points. For example, a��z
refers to the entire alphabet including a and z.

Alerts
Conditions or practices that could damage the equipment are labeled with the word
CAUTION. These keywords appear along with the following icon displayed in the
margin:

Service
In general this equipment is not user serviceable. Do not perform any service other
than as specified in this manual.

Getting Help
If you have any technical questions, concerns, or problems with your MAJIC or the
EDT software package that accompanies it, please do not hesitate to contact our
technical support department for help. The following table lists contact information
for EPI technical support.

We are committed to making sure our tools work well for you. To expedite your
request, be sure to provide your MAJIC serial number and EDT software serial
number when contacting EPI technical support.

!

Method Information

Web Site www.epitools.com

• Application Notes

• FAQs

• Support Request Form

• Updates

Email support@epitools.com

Telephone 408-957-0350
MAJIC User’s Manual 0380-0163-10 Rev 2.01 ix

About this Manual
x 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC User’s Manual 0380-0163-10 Rev 2.01
1
Overview
The MAJIC Intelligent Debug Probe environment consists of two components that
communicate through an Ethernet port or a high speed RS-232C serial data port: a
debugger running on a host computer, and a MAJIC probe.

The MAJIC probe contains the hardware and software that controls the JTAG
interface to the processor’s Debug Support Unit (DSU), stores trace data, and
performs debug services such as memory test, single stepping, and breakpoint
management.

The debugger implements high-level debug functions by sending debug service
requests to the MAJIC probe over the communication link. It then formats and
displays the data or status information that is returned from the MAJIC probe.

This chapter provides a brief overview of the MAJIC series of intelligent probes,
and their use with debuggers from EPI and third-party tool venders. Except where
otherwise stated, the term MAJIC probe refers to the entire MAJIC series of
intelligent debug probes.

What is the MAJIC Probe?
The MAJIC (Multi-processor Advanced JTAG Interface Controller) probe is a
debugging and development tool that provides the user the ability see what is
taking place in the target system, and control its behavior. The MAJIC probe
provides the debug services that the debugger uses to perform debug operations. It
receives command packets over the communication link, and translates them into
the JTAG operations that are needed to provide the specific service.

First, it can control the operation of the target processor and target system. What
does it mean to “control” the target? In most cases it means to start and stop the
processor's execution of instructions at arbitrary points in a program, examine and
store values in the processor’s registers, and examine and store program code or
data in the target system’s memory.

Depending on the capabilities of your target processor and MAJIC probe model, it
may also be possible to record real-time execution history in a trace buffer. This
1

1 Overview
allows you to see what the processor was doing prior to a trigger event, or what the
processor did after a trigger event. With ARM/ETM and the MAJICPLUS probe, it
is even possible to capture load/store addresses and, optionally, data values for an
even more complete picture.

The MAJIC Probe Models

The base MAJIC probe provides processor control and target access for one
processor. The processor can be on a JTAG daisy chain with other devices, even
other processors, but can only connect to one processor at a time.

The MAJICMX probe incorporates EPI’s MDS2 technology to support debugging
multiple processors concurrently through a single JTAG interface. The MAJICMX

probe also supports real-time tracing for processors with on-chip trace buffers.

The MAJICPLUS probe includes everything provided by the MAJICMX probe plus
support for real-time tracing on processors with external trace interfaces such as
ARM/ETM and EJTAG v2.0.

NOTE: Please visit the EPI web site for more information on our MDS2
technology.

What is a Debugger?
A debugger is a program that runs on a host computer, providing the user interface
for the features of the MAJIC probe.

A symbolic debugger is a low-level debugger that is useful for debugging the
hardware, software written in assembly language, or software written in a language
not supported by a source-level debugger. It may also be the best tool for running
automated test procedures such as manufacturing test suites and diagnostics.

A source-level debugger understands the programming language of the application
program source code. This allows the user to debug source code, without having to
try to relate dumps of disassembled, optimized machine code.

EPI offers the following debuggers:

• MONICE (a symbolic debugger)

• EDBICE (a C source-level debugger)

• ADW and AXD (ARM’s source-level debuggers)

In addition to the debuggers available from EPI, third-party debuggers can also be
used with the MAJIC probe. The MAJIC probe provides access to all its
capabilities via the following open Application Programming Interfaces (API):

• A library implementing the architecture-neutral Meta Debug Interface
specification is available, as described in the MAJIC MDI User’s Guide.
This is the interface library used by GDB, as well as several commercially
available debuggers.

i

2 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Overview 1
• The EDTA software package that comes with the MAJIC probe includes a
library implementing version 1.5.1 of the ARM Remote Debug Interface
(RDI) specification. See the MAJIC RDI User’s Guide for details.

• For Windows CE support, EPI offers an eXDI driver and plug-in for
Platform Builder 3.0 and 4.0.

• For Tornado support, EPI offers a Wind River Back-End option for
interfacing the MAJIC probe to the Tornado development environment.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 3

1 Overview
4 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC User’s Manual 0380-0163-10 Rev 2.01
2
Getting Started
This chapter provides the essential information you need to set up your MAJIC
Intelligent Debug Probe hardware. It includes the following sections:

• Unpacking the System below discusses issues concerning unpacking and
repacking for shipping.

• Hardware Installation on page 6 describes how to set up the MAJIC probe
and its accessories.

• Target Connection on page 6 provides information on connecting the
MAJIC probe to your target.

• Host Computer Connections on page 8 describes how to connect the
MAJIC probe to your computer using a serial connection or Ethernet.

• System Check-out on page 12 provides step-by-step instructions to verify
that the MAJIC probe is operating properly.

CAUTION: Incorrect installation can damage the MAJIC probe or your target
board, so please read this chapter carefully. Also, this equipment is not user
serviceable. Do not perform any service other than as specified in this manual.

Unpacking the System
The MAJIC probe is delivered in a cardboard shipping carton. This carton and the
associated packing materials around the MAJIC probe are designed to absorb any
reasonable shock normally encountered in transit. Prior to unpacking, examine the
exterior of the shipping carton for any signs of damage. Note any damage and if
damage is severe, notify the carrier immediately before opening carton.

Carefully remove the MAJIC probe, options, and accessories from the carton and
inspect the exterior of the instrument for any signs of damage. If damage is found,
notify the carrier immediately. You may also wish to contact EPI Customer
Support.

CAUTION: You should always use the original shipping carton and packaging
material when shipping this equipment.

!

!

5

2 Getting Started
If you are missing any of the standard or optional items that were ordered, check
the packing slip. If the packing slip does not indicate that the missing items are
back ordered, please contact EPI Customer Support immediately (see Getting Help
on page ix).

Hardware Installation
The MAJIC probe should be placed horizontally on a firm, flat surface. You
should consider how the JTAG cable(s) will be routed to the target system to avoid
undue stress, twisting, or scraping.

Power Connection

The MAJIC probe comes with its own power supply. If an alternate power supply
is used, it must generate a regulated 5V DC at 4A or greater. For correct operation,
the 2.1mm power connector should have the positive supply connected to the
center pin, as shown below:

CAUTION: The MAJIC probe may be damaged if the wrong power supply is used.
Damage resulting from using the wrong power supply is not covered under
warranty or MUS contract. Please look for the MAJIC probe label on the DC
power cord.

Target Connection

The standard MAJIC probe and MAJICMX probe use a female DB25 connector for
the target connection. A single cable either connects the MAJIC probe directly to
the debug connector on your board, or to a Target Adapter Module which is then
installed on your board.

A MAJICPLUS probe uses a MAJICPLUS Adapter Module to adapt its high density
connector to various target connector configurations. One or two cables connect
the MAJICPLUS Adapter Module either directly to the debug connector on your
board, or to a Target Adapter Module which is then installed on your board.

Cable Kits The cable(s) required to connect a MAJIC probe to your target system depends on
the MAJIC probe model, and the specific debug connector on your board. EPI
offers a number of connection kits to cover common connectors.

The following figure is an example of how the MAJIC probe connects to a target
board. Please refer to the application note included with your connection kit
accessory for specific connection information.

0V
ground

+5V

!

6 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Getting Started 2
NOTE: Before attempting to use the MAJIC probe on your target board, you must
address specific configuration issues (as described in Chapter 3, Debug
Environment, on page 15).

Mini Probe The MAJICPLUS probe can trace up to eight external test points via a Mini-Probe.
The Mini-Probe connects to the front of the MAJICPLUS probe box via a 20-pin
ribbon cable. A set of clips are provided to attach to the test points on your board.

Caution: The mini-probe ribbon cable is keyed and must be inserted into the
connector on the mini-probe case and the MAJICPLUS probe in the proper
orientation. DO NOT FORCE. When properly aligned, the connectors will engage
smoothly. Improper orientation may cause damage or loss of functionality. The
“red-stripe” on the ribbon cables DO NOT provide a positive indication of the
keying.

NOTE: Because the mini-probe is separate from the processor connection, the
sample point (in time) of the user probes is not tightly coupled to the processor's
trace clock. Furthermore, user probes are generally used with signals that are not
synchronous to the trace clock. This imposes a restriction that a signal must
remain in a high or low state for at least two trace clock cycles to guarantee that the
pulse is captured. This may also cause a slight skew between the processor’s trace
signals and the user probes in the trace buffer.

MAJIC

Target Board

Debug Connector

Target Adapter Module

Target Connector

Target Connection Cable(s)

1

or MAJICPLUS Adapter Module (MAJICPLUS probe)
DB25 Connector (MAJIC or MAJICMX probes)

i

!

"KEY"

Cable

Mainframe Connector
Mini-Probe or

Connector

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 7

2 Getting Started
Triggers A MAJIC probe can trigger, or be triggered by, external test equipment using the
following connections on the rear panel of the MAJIC probe box:

TRIG IN Allows external test equipment (or another MAJIC probe)
to trigger the MAJIC probe. To use this feature, a coax
cable no more than 1 meter in length should be connected
to the trigger output of the external test equipment.

TRIG OUT Can be used to trigger external test equipment (or another
MAJIC probe) from the MAJIC probe. To use this feature,
a coax cable no more than 1 meter in length should be
connected to the trigger input of the external test
equipment.

TRACE ENABLE Can be used with the MAJICPLUS probe to trigger or
conditionally inhibit trace acquisition from the external
test equipment. (Only the MAJICPLUS probe supports this
connector). To use this feature, a coax cable no more than
1 meter in length should be connected to the trigger output
of the external test equipment.

NOTE: No “T” or terminator is required for these connections.

Host Computer Connections

All communication connectors are located on the rear panel of the MAJIC probe.
The MAJIC probe can be connected to the host computer with a high speed
RS-232C serial interface or through an Ethernet network connection (described in
Ethernet Setup on page 9).

Serial Connection To connect to the host through a serial cable, observe the 9-pin connector on the
rear panel of the MAJIC probe. Connect the male end of the RS-232C serial cable
to the 9-pin connector labeled “SERIAL”. Connect the other end of the cable to the
serial port on the host computer or workstation which will be used with the MAJIC
probe, and note which communication port you have selected. This will be
required when you begin using the MAJIC probe.

NOTE: The MAJIC probe’s serial connector is wired as a “DCE” device. As typical
computer serial ports are wired as “DTE” devices, a straight-through one-to-one
cable (i.e. not a “null modem”) is used. Only pins 2 (RX), 3 (TX), and 5 (GND) are
required to be wired; no handshaking signals DTR/DCD and RTS/CTS are used.

Debug Terminal When not used for host communication, the serial port doubles as a diagnostic
terminal. It can be connected to a dumb terminal using a straight-through RS-232C
cable. Only pins 2, 3, and 5 are required to be connected.

The terminal should be set for 9600 baud, 8 bits, 1 stop, no parity. Characters that
are typed are echoed back to the terminal, but are not processed. The sole purpose
of using this port for a diagnostic terminal is to display diagnostic and status
messages when instructed to do so by EPI Technical Support.

i

i

8 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Getting Started 2
Ethernet Setup The MAJIC probe supports both 100Base-T and 10Base-T (twisted-pair). For
technical details on how to connect the MAJIC probe to a new or existing network,
see Appendix A, Ethernet Considerations, on page 153.

Attaching the MAJIC
Probe to Ethernet

The process of attaching a MAJIC probe to an Ethernet network consists of four
steps:

1. Connect the MAJIC probe to a network hub using a standard ethernet
cable. Alternatively, you can connect the MAJIC probe directly to your
computer with a “cross-over cable” for a point-to-point connection. Both
types of cables are provided with each MAJIC probe.

2. Assign (or obtain from your system administrator) a host name and IP
address for the probe. The host name is optional, but is easier to remember
than the IP address.

3. If you are using a host name for the MAJIC probe, make sure that the
computer on which you will be running the debugger can translate the
MAJIC probe’s host name to its IP address.

4. Make sure that the MAJIC probe will be able to learn the IP address you
have assigned to it, either statically, dynamically, or manually. These
options are explained below.

Static IP A static IP address can be programmed into the MAJIC probe so that MAJIC probe
always knows its IP address. If you have installed the EDT software package on a
Windows system, the easiest way to set the static IP address is to connect the
MAJIC probe to your computer with a serial port and use the MAJIC probe Setup
Wizard. Alternatively, you can establish a temporary ethernet or serial connection
and then set the static IP address from within the debugger. These procedures are
provided below.

NOTES:

• Neither the wizard nor debugger will be able to use the COM port if
another application (such as hyperlink or your PDA) is using it.

• To clear the static IP address, follow the procedure below and program the
static IP address to 0.0.0.0

Setting the Static IP via the Setup Wizard

1. Connect the MAJIC probe to your computer’s COM port (See Serial
Connection on page 8).

2. Power up the MAJIC probe. You can leave the target system turned off or
disconnected during the update process, or you can connect it normally.
Make sure the Status LED is green before proceeding.

3. Click on the Windows Start button, choose Programs, and then choose the
MAJIC Setup Wizard shortcut in the EPI Tools folder.

4. Read the introductory information on the first form, then click Next to
open the Choose Operation form, shown below.

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 9

2 Getting Started
5. Click on the Go button in the Setup Static IP Related Address Information
on your MAJIC box to open the Configure Static IP Address form, shown
below.

6. Enter the network information provided by your network administrator,
and click NEXT to display the MAJIC Connection Parameters form, shown
below.
10 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Getting Started 2
7. Select serial as your connection method in the MAJIC Connection
Parameters form.

Make sure the COM port is not in use by another program, and that the
serial cable is correctly installed.

8. Click on the button Install IP to set the network information—this will take
a few moments, and it is important not to disturb the process once started.

9. After the update has completed, you can close the Setup Wizard by
clicking on the Quit button.

10. Power cycle the MAJIC probe so that the new settings can take effect. You
should now be able to “ping” the MAJIC probe using your computer’s
ping command.

Setting the Static IP via the Debugger

1. If you want to use a serial connection to program the static network
information, connect the MAJIC probe to your computer’s COM port (See
Serial Connection on page 8). If you want to use a temporary ethernet
connection instead, use the Manual ARP method (described in Manual
ARP on page 12) to create the temporary IP address (which can be the
same as your static IP address).

2. Set up your debug environment as described in Chapter 3, Debug
Environment, on page 15. EPI recommends using MONICE for this, using
the start-up files in the ice/majic folder of your EDT software package.
However, it is possible to complete this procedure with any debug
environment.

3. Use the following commands to set the static network information.
Normally only the first is required, but if the MAJIC probe and your
computer are located on separate subnets, then you may need to set all
three options. (See Appendix A, Ethernet Considerations, on page 153 for
more information on this topic.)

eo Tv_Ip_Address = ___.___.___.___

eo Tv_Ip_Netmask = ___.___.___.___

eo Tv_Ip_Gateway = ___.___.___.___

4. Exit the debugger and then power cycle the MAJIC probe so the new
settings can take effect. You should now be able to “ping” the MAJIC
probe using your computer’s ping command.

5. If you completed this process with a serial connection, you may now
reconfigure your debug environment to use the ethernet port instead (see
Chapter 3, Debug Environment, on page 15).

Dynamic IP If the MAJIC probe is being connected to a network where IP addresses are
centrally administered, it may not be desirable to configure the probe with a static
IP address. In this case, the MAJIC probe can acquire its IP address dynamically
from a network server using either the RARP or BOOTP protocol.

If some server on the net will respond to a RARP (Reverse ARP) or BOOTP
request, the probe will get its IP address from the response packet and will then be
MAJIC User’s Manual 0380-0163-10 Rev 2.01 11

2 Getting Started
able to respond to ARP request packets and connect to any computer on the net.
Your network administrator will determine whether to use a RARP or BOOTP
server, and will set up the server appropriately. To do this, they will need to know
the MAJIC probe’s Ethernet address, which is on the serial number label on the
bottom of the MAJIC probe.

Manual ARP If the MAJIC probe’s static IP address has not been set, and there is no RARP or
BOOTP server on the network, there is one other way to make a connection to the
MAJIC probe using Ethernet: the computer that will connect to the MAJIC probe
can have the MAJIC probe’s IP address to Ethernet Address translation added to its
ARP table manually.

The ARP table is a table of Internet to Ethernet address translations, maintained in
memory by the network software on your computer. It is used to reduce network
traffic by remembering the Ethernet address for other network nodes to which
packets have been sent recently. This avoids the need to re-issue ARP requests
frequently.

If an entry is made in this table manually, then when you run the debugger (or
execute the ping command), the host can directly address packets to the MAJIC
probe without first having to issue an ARP request and wait for a reply.

On most systems, a manual ARP table entry is made via the arp command:

arp -s host_name ethernet_address

NOTES:

• Manually entered ARP table entries are not retained when your computer
is rebooted.

• Windows 95 and 98 do not support arp -s unless you have ping’ed
some other network node first.

System Check-out
System check-out consists of two steps: a built-in self test, and a functional
verification procedure. These check-out procedures allow you to verify that the
MAJIC probe is operating properly.

Power-on Self-Test

The MAJIC probe performs a built-in, power-on self-test (POST) to verify its
functionality. The target may or may not be powered up (or even connected to the
MAJIC probe) at this time.

As the name implies, the POST is invoked each time power is applied to the
MAJIC probe. Since the POST executes quickly, it is recommended that this entire
section be read before applying power to the MAJIC probe so you will know what
to watch for.

i

12 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Getting Started 2
Apply power to the MAJIC probe and observe the color of the five LED indicators
(POWER, STATUS, ENET, RUN, and CONNECT). When power is applied, the
POWER indicator turns green.

When the POST firmware is initiated, the STATUS indicator will turn red. When
the tests have been completed, the STATUS indicator will turn off, and the
firmware will initialize. If you have connected a debug terminal to the MAJIC
probe’s serial port (see Debug Terminal on page 8), then hardware and firmware
revision information is displayed at this time. Once the MAJIC probe is ready for
use, the STATUS indicator will turn green.

If a fatal failure is detected, the STATUS indicator will flash a pattern indicating
which test failed. Record the number of green flashes and red flashes, and call EPI
technical support. Do not attempt to complete the system check-out or use the
system.

The ENET indicator is green when the ethernet link is ready but not in use, off
when transmitting or receiving, and blinks red when a collision occurs.

The RUN indicator is red whenever the target processor is reset by the MAJIC
probe; off when neither reset nor running; and green when the target processor is
executing code.

The CONNECT indicator is green whenever the MAJIC probe is electrically
connected to the target system, and red when disconnected. It remains red until a
debug session is initiated and the target power monitor is enabled (see Target
Power Management on page 40), and then serves as a target power indicator. When
the debugger is exited, the MAJIC probe disconnects from the target, and the
CONNECT indicator turns red.

JTAG Bypass Test

When the MAJIC probe first connects to the target system and detects target
power, it attempts to initialize and test the JTAG interface. First it attempts to
determine the configuration of the JTAG scan chain. If successful, it then performs
a Bypass test, which is essentially a loopback test through the JTAG scan chain.
This sequence is repeated whenever the MAJIC probe detects that the target’s
power has been cycled. For more information on JTAG initialization, see JTAG
Initialization on page 40.

Confidence Test

The MAJIC probe software package includes an automated test suite to verify that
the MAJIC probe is working correctly. To use this test suite, you must attach the
MAJIC probe to the appropriate reference board for your processor. If using a
MAJICPLUS probe then you should also connect the Trigger Out to the Trace
Enable on the back of the unit.

The test suite is run under the MONICE debugger. If you have installed the EDT
software package on a Windows system, use the MAJIC Setup Wizard to create a
MAJIC User’s Manual 0380-0163-10 Rev 2.01 13

2 Getting Started
shortcut to MONICE, as described in Chapter 3, Debug Environment, on page 15.
Be sure to select ice\majic\reg_test.xxx in the Configuration Files form,
since special start up files are required when running this test suite (see Specify
Your Configuration Files’ Location on page 19).

To run the confidence test under Linux or Solaris, start MONICE from within the
ice/majic/reg_test.xxx directory. You will need to specify the -d and -v
switches to define the communication device and CPU version you are using. For
little endian targets, be sure to include the -l switch as well. See MONICE
Command Line on page 169 for full information on running MONICE.

After starting MONICE, check that the MAJIC probe’s status LED is green. If not,
review the messages presented by MONICE to see if it has already reported a
problem.

If the status LED is green, initiate the test suite with the following command:

 MON> fr c reg_test

When the test completes, view the reg_test.out file with any text editor and
verify that all tests completed with no differences. If differences are reported,
please zip the reg_test.out and output*.out files and send them to
support@epitools.com for analysis.
14 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC User’s Manual 0380-0163-10 Rev 2.01
3
Debug Environment
Every target system is different, so the MAJIC Intelligent Debug Probe needs
information on the specifics of your system design in order to operate correctly.
This chapter discusses how to tailor the MAJIC probe to your specific hardware
and personal preferences. It also provides instructions for setting up the debugger
environment.

Using the Setup Wizard
If you are using a debugger that runs under Windows, the MAJIC Setup Wizard is
the easiest way to configure your debug environment. Using the MAJIC Setup
Wizard you can:

• Choose your debugger and processor.

• Select the MAJIC probe connection information.

• Define the target interface information or select a pre-existing target
interface definition. (You can select a sample provided with your EDT
software package, or one that you created previously.)

NOTE: If you are using GDB in a Linux or Unix environment, please refer to
Configuration with Other Debuggers on page 28, and the Using GDB with MAJIC
Intelligent Debug Probes Application Note for information on configuring GDB
for use with the MAJIC probe.

Choose Your Debugger

Run the MAJIC Setup Wizard, read the introductory information on the first form,
then click Next to open the Choose Operation form, shown below:

i

15

3 Debug Environment
Choose your debugger from the drop down list, and click Go. This controls the
action(s) that the wizard will take upon completion.

NOTE: If you are intending to use a third-party debugger with the MAJIC probe,
you should test your configuration with MONICE first, then run the wizard again
to set up the other debugger. Refer to the appropriate EPI and debugger
documentation for information on how to connect your debugger to the MAJIC
probe.

The Choose Operation form allows you to configure the following debuggers:

EDBICE EDBICE is EPI’s C source-level debugger with built-in
support for real-time trace. It provides an easy to use
graphical user interface implemented as a Windows
application.

MONICE MONICE is the command-line based, symbolic,
assembly language debugger included in the EDT
software package. It is well suited for the early stages
of hardware debugging, and running automated test
scripts. Refer to Chapter 5, MON Command Language,
on page 71, for information on MONICE.

Platform Builder
for Windows CE

EPI offers support for using the MAJIC probe in the
Platform Builder environment with an eXDI driver
included in the EDT software package. EPI also offers
a Platform Builder Plug-In to provide access to the
high-end features of the MAJIC probe, such as
real-time trace.

ADW, AXD, and
Other RDI
Debuggers

The EDTA software package that comes with the
MAJIC probe includes an RDI driver to support ADW,
AXD, and other RDI compliant debuggers. Refer to the
RDI for MAJIC User’s Guide and the documentation
that came with your debugger for more information on
configuring the RDI debug environment.

i

16 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Debug Environment 3
NOTE: Tornado Users - The current version of the MAJIC Setup Wizard does not
support the Wind River Tornado environment. However, EPI offers support for
using the MAJIC probe in the Tornado environment with the “Wind River
Back-End” option. Refer to the Tornado Interface for MAJIC User’s Manual and
the documentation provided with the Tornado Development environment for full
information on using the MAJIC probe in the Tornado Development Environment.

Specify Your Project Name

After you chose your debugger and click Go, the Project Name form opens (shown
below).

Specify a project name and description, then click NEXT to continue.

The project name is used to create desktop shortcuts to EDB and MON. Both the
project name and description are added as comment header blocks in the startup
command files (startice.cmd) and the configuration files (epimdi.cfg and
rdimajic.cfg).

GDB GDB works with the MAJIC probe via a program
called mdiserver, which is included in the EDT
distribution. mdiserver implements the standard
GDB remote-protocol, so no special build of GDB is
required. mdiserver then uses the standard MDI
shared library to interface to the MAJIC probe. See the
Using GDB with MAJIC Intelligent Debug Probes
Application Note for details on using GDB with the
MAJIC probe.

MDI-compliant
Debuggers

There are several commercially available debuggers
that interface to the MAJIC probe via MDI. Refer to the
MDI for MAJIC User’s Guide and the documentation
that came with your debugger for more information on
configuring the MDI debug environment.

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 17

3 Debug Environment
Specify Your Processor

After you specify your project and click Next, the CPU Configuration form opens
(shown below).

From the drop-down list in this form, pick the processor that most closely matches
the processor you are using. Also select either Little Endian or Big Endian as
appropriate for your system. Then click NEXT to continue.

Specify Your Connection Type

After you specify your processor and click Next, the MAJIC Connection
Parameters form opens (shown below).

Specify whether you will use a serial or ethernet connection, and then click NEXT.

• If you choose serial, then select the COM port and baud rate. (Remember
that the debugger will not be able to use the COM port if another
application such as Hyperlink or your PDA is using it.) On most
computers 115k baud is the best choice, but on some computers a slower
speed may be more reliable.

• If you choose ethernet, then specify the MAJIC probe’s host name or IP
address in the appropriate box. See Ethernet Setup on page 9 for
information on establishing an ethernet connection with the MAJIC probe.
18 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Debug Environment 3

i

Specify Your Configuration Files’ Location

After you specify your connection parameters and click Next, the Configuration
Files form opens (shown below).

The key information for adapting the MAJIC probe to a given target board is
specified in configuration files, which are read by the debugger or debug interface
library when the debugger starts up (described later in Configuration Process on
page 22).

In the Configuration Files form, you can specify either an existing startup file or to
create a new startup file, and then click NEXT to continue.

• To specify an existing startup file (either an EPI sample startup file or a
startup file that you already have), select the box Use Existing Startup File,
and enter the location of the file in the Directory field, or use the Browse
button to select the location.

For EDB or MON, this should be your project’s build directory. For other
debuggers, you must put the configuration files where your debugger
expects to find them (check your debugger documentation).

NOTE: The EDT software package includes sample startup files for
standard reference platforms in the samples/... folders. If your board is
similar to one of the reference boards, you can just install the appropriate
sample file(s).

• To create a new startup file, select the box Create New Startup File. You
should then click the Adjust Default Properties button to review the
information in the Target Interface Properties form, shown below.

The default properties are based on the reference board for your CPU, but
they can be adjusted to accommodate differences on your board. After
reviewing the properties, click OK to return to the Configuration Files
form.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 19

3 Debug Environment
NOTES:

• Information on each of these options is provided in the text box at the
bottom of the form.

• Except for user-defined start-up files, these options are also described
in Appendix B, Configuration Options, on page 159, and the relevant
sections in Chapter 4, MAJIC Probe Debug Services, on page 39.

• See Advanced MAJIC Probe Configuration on page 30 for information
on user-defined start-up files.

Specify Your Destination or Reference Directory

NOTE: If you are using Platform Builder for Windows CE, skip this step. There is
no need to specify a destination or reference directory, and the Perform Setup form
appears instead. Go to Perform the Setup on page 21.

After you specify how you want to handle your startup file in the Configuration
Files form and click NEXT, the Destination or Reference Directory form appears
(shown below).

NOTE: Depending on the selections you make in the previous forms, there may be
certain differences in the form from the figure shown below.

i

i

i

20 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Debug Environment 3
NOTE: Some third party debuggers have special requirements as to where the files
must be placed. Check your documentation or related EPI documentation for more
information.

If you want to establish a new debug environment, click the option Select a
Destination Directory to Create/Copy Startup Files to, and either enter a directory
or use the Browse button to select the directory. This option applies whether you
are using an existing startup file or are creating a new startup file. Normally this
directory should be your project’s build directory. If you specify a directory that
does not exist, you will be prompted to create the directory.

If you want to use an existing debug environment with the EDBICE or MONICE
debugger, or use an EPI sample startup file, click the option Reference the existing
startup files from their location. In this case, the location you specified in the
Configuration Files form is used. Selecting this option creates a shortcut to run the
existing startup file.

After making your selection, click NEXT to continue.

Perform the Setup

After you specify your destination or reference directory and click Next, the
Perform Setup form opens (shown below).

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 21

3 Debug Environment
This form lists the setup actions that the Setup Wizard will perform. Review the
setup actions listed to ensure that the correct actions will be performed. To make
changes, click BACK to return to the appropriate form and make any corrections
needed. When you are satisfied with the actions listed, click Perform Actions.

Configuration Process
This section describes the initialization process that takes place when you launch
the debugger and connect to the MAJIC probe. The initialization process varies
slightly, depending on your debug environment. The following sections explain the
initialization process for various debug environments:

• Configuration with MONICE on page 27

• Configuration with EDBICE on page 27

• Configuration with Tornado on page 28

• Configuration with Other Debuggers on page 28

Configuration Files

This section discusses the startice command file (startice.cmd) and the register
definition file (*.rd).

File Search Order EPI debuggers and debug libraries use the following search order to find any
needed files (such as the initialization files):

1. They first search the current working directory.

2. Then the directory from which the debugger was loaded (i.e. the bin
directory).

3. Then each directory in your PATH environment variable.

For example, if MONICE searches for the startice.cmd command file, it uses
the first startice.cmd file that it finds. If startice.cmd reads a user-supplied
22 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Debug Environment 3
initialization file, the same search order is used to find that file (unless a full path is
provided).

Startice Command
File

Most of the adaptations required to tailor the MAJIC probe to a given target board
are handled with a start-up script file named startice.cmd. This is a command
file that sets the key configuration options for describing the target system and
controlling the MAJIC probe’s operation. It also declares a memory configuration
table to describe the target’s memory system. Optionally, it can read a
user-supplied command file, if the target board has special initialization
considerations, or to set advanced options.

The EDT software package that comes with the MAJIC probe includes several
sample startice.cmd files for standard reference platforms. If your target board
resembles a standard reference platform, you can use the appropriate sample
startice.cmd by installing it with the MAJIC Setup Wizard (see Specify Your
Configuration Files’ Location on page 19). Otherwise, you can use the MAJIC
Setup Wizard to create a startice.cmd with properties appropriate for your
board (see the figure on page 20).

Register Definition
File

EPI debuggers and debug libraries allow you to add your own definitions for
application-specific co-processor registers and memory-mapped registers to the
standard CPU-specific registers already built-in. This allows you to access your
special registers by name rather than having to remember their address. In addition
to assigning names to the registers, bit fields within the registers may be defined as
well, so that they too may be viewed or set by name. Register window views can
be added to EDBICE as well so that you can conveniently view and edit the
specific set of registers that are important in your debug session.

Follow these steps to create and use register definition files for your custom
hardware:

1. Copy samples\sample.rd from your EDT package to the folder
selected in the Configuration Files form (see Specify Your Configuration
Files’ Location on page 19). You may also want to rename it.

2. Add your register details with any text editor as described in File Format
below.

3. Use the following command to read your register definitions:

fr rd filename

To automatically read your register definition file, use this command in
your custom initialization file (see Custom Initialization File on page 31).

File Format New register names are definable with the information below:

REG = reg_name offset space_name byte_size �SEQ first last
obj_inc �inc��

reg_name Is an ident giving the name of the register being defined.

offset Is a decimal number giving the register’s byte offset
within the specified space. For real register spaces, the
MAJIC User’s Manual 0380-0163-10 Rev 2.01 23

3 Debug Environment
offset is the register number times the register size. For
memory spaces, the offset is the byte address.

space_name Is one of the keywords from the list below giving the
register file or memory space for the register.

byte_size �1�2�4�8� is the size of the register in bytes.

first Is a decimal number giving the first value to append to
reg_name to form a sequence of names. Sequences make
it easy to represent a consecutive set of like-named
registers (e.g. r0��r31).

last Is the last number in the sequence (see first).

obj_inc Is a decimal number giving the amount to increment
offset for each register in the sequence. This is usually
the same value as byte_size, but may be larger in some
cases.

inc Is a decimal number giving the amount by which to
increment the register number for each name in the
sequence. If not specified, the default is 1.

For example: Let’s say we want to have a sequence of 4 byte-size registers mapped
to physical memory at 0, with each register in the low byte of successive machine
words (32 bits). If the designer chooses to name these registers z1, z3, z5, ..., then
the definition would be:

REG=z 0x0 MEMORY_P 1 SEQ 1 7 4 2

Registers can also be broken down into displayable fields. Any previously defined
register or register sequence can be set up as field encoded. Note that if a field
breakdown is given for a register sequence, the fields apply to every register in the
sequence. Fields of more than one bit are displayed as
field_name=hexadecimal_value. One bit fields are displayed as a uppercase
or lowercase field_name where uppercase means a TRUE or 1 value.

REG_FIELD = reg_name field_spec �, field_spec�
reg_name Is an alphabetic name previously defined via a REG

statement. Note that for sequence registers a full
sequence register name must be given (including the
number).

field_spec field_name high_bit low_bit �, field_spec�
field_name Is an ident giving the name of the field.

high_bit Is a decimal number in the bit range of the given register.
Must be >= low_bit.

low_bit Is a decimal number in the bit range of the given register.
Must be <= high_bit.

EDB also supports adding addition register window types (panes): A window
definition is simply a list of register name pairs. All the registers logically
contained between, and including the two referenced registers, are included in the
list. Registers within the window are logically broken down into groups based on
24 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Debug Environment 3
the name. Sequence registers are displayed in groups with wrapping occurring at
the right screen edge. Registers with field symbol definitions always display one
per line. The only supported display format for registers is hex.

REG_WINDOW_CLASS = class_name reg_list �, reg_list�
class_name Is an alphabetic name.

reg_list �reg_name reg_name���, reg_list�

reg_name Is an alphabetic name previously defined via a REG
statement. Note that for sequence registers, a full
sequence register name must be given (including the
number).

NOTE: Include files are supported to allow common processor elements to be
placed in one file. The INCLUDE command (shown below) begins reading from
the referenced file and returns to the calling file when done. Nested include files
are allowed.

INCLUDE “filename”

Predefined Spaces for ARM and XScale

Space Name Description

MEMORY_V Virtual Memory

MEMORY_P Physical Memory

CRNT General Registers r0 - r15

USER User/System mode registers

SVC Supervisor mode registers

IRQ Interrupt mode registers

FIQ Fast Interrupt mode registers

ABORT Abort mode registers

UNDEF Undefined exception mode registers

STATUS cpsr, spsr {svc, abort, undef, irq, fiq}

COPROC0 CoProcessor 0 registers

COPROC1 CoProcessor 1 registers

COPROC2 CoProcessor 2 registers

COPROC3 CoProcessor 3 registers

COPROC4 CoProcessor 4 registers

COPROC5 CoProcessor 5 registers

COPROC6 CoProcessor 6 registers

COPROC7 CoProcessor 7 registers

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 25

3 Debug Environment
Predefined Spaces for MIPS

Sample Register Definition file

The example below demonstrates a definition for some memory mapped registers
(common in hardware designs).

COPROC8 CoProcessor 8 registers

COPROC9 CoProcessor 9 registers

COPROC10 CoProcessor 10 registers

COPROC11 CoProcessor 11 registers

COPROC12 CoProcessor 12 registers

COPROC13 CoProcessor 13 registers

COPROC14 CoProcessor 14 registers

COPROC15 CoProcessor 15 registers

Space Name Description

MEMORY_V Virtual Memory

MEMORY_P Physical Memory

GR General Registers r0 - r31

MR mdhi, mdlo

CP0_CTL Some newer MIPS32 chips use this space

CP0_GEN Coprocessor control register (cause, sr, etc)

CP1_CTL floating point control

CP1_GEN floating point

CP2_CTL CP2 Typically not used

CP2_GEN CP2 Typically not used

CP3_CTL Mips I/II architecture chips only

CP3_GEN Mips I/II architecture chips only

ICT Instruction Cache tags

DCT Data Cache tags

TLB TLB registers 0..?

LX Lexra CP0 registers

Space Name Description
26 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Debug Environment 3
Configuration with MONICE

When MONICE is started, it automatically reads the register definition file and
startice.cmd to initialize MONICE and the MAJIC probe.

You may also set certain configuration options via command line switches, or
specify additional command files to run on the MONICE invocation line. See
MONICE Command Line on page 169 for more information.

Configuration with EDBICE

EDBICE uses four initialization command files for different types of setup
information, as shown below.

The initialization files are:

cdb.rc This file is a simple EDB command file (a text file of
EDB commands) that is always loaded by EDB at startup.
Users do not typically need to modify this file. EPI
supplies a default cdb.rc file in the bin directory, which
reads startice.cmd.

// Sample Register Definition File - Demonstrates the declaration of new

// registers, register fields, and an EDB register window for them.

// Map device "a"'s registers -- contains three 32 bit registers

REG=dev_a_ctrl 0xFF00A000 MEMORY_P 4

REG=dev_a_data1 0xFF00A004 MEMORY_P 4

REG=dev_a_data2 0xFF00A008 MEMORY_P 4

REG_FIELD=dev_a_ctrl status 2 0, lock 3 3

REG_WINDOW=Device_A dev_a_ctrl dev_a_data2

startice.cmd

program.rc

cdb.rc

EDBICEprocessor.rd

MAJIC
MAJIC User’s Manual 0380-0163-10 Rev 2.01 27

3 Debug Environment
startice.cmd This file contains initialization commands for configuring
the MAJIC probe. It is read via a command in cdb.rc
when EDBICE is started. (See Startice Command File on
page 23.)

program.rc Contains program-specific EDB configuration
information, including the program sections to download
and the breakpoint list. This file is read when you choose
the program to debug through the File menu, and can be
saved with the File/Save Session menu, or by clicking
Yes when prompted upon exiting EDBICE.

processor.rd The register definition file for the selected processor. (See
Register Definition File on page 23.)

Configuration with Tornado

When the Tornado development environment loads the EPI Wind River Back-End
(epiwrbe.dll), the library automatically reads the startice.cmd file and the
register definition file.

Configuration with Other Debuggers

The following figure shows the configuration process when using a third-party
debugger with an EPI debug library such as eXDI, MDI, or RDI. For additional
information, please refer to the user manual for your third-party debugger, and
corresponding EPI debug library user manual.

The initialization files are:

processor.rd The register definition file for the selected processor. (See
Register Definition File on page 23.)

Configuration file This file is either rdimajic.cfg for RDI, or
epimdi.cfg for MDI and eXDI. The configuration file
specifies the MAJIC probe communication parameters,

Configuration

EPI
Library

File
startice.cmd

Debugger
MAJIC

processor.rd
28 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Debug Environment 3
CPU type, and the name (and optionally the location) of
the startice.cmd file.

NOTE: Sample configuration files are included in the EDT
software package that comes with the MAJIC probe.
However, it is usually best to build a custom configuration
file with the MAJIC Setup Wizard.

startice.cmd This file contains initialization commands for configuring
the MAJIC probe. See Startice Command File on page 23.

Configuring AXD for
RealMonitor through
RDIMAJIC

The debugger side of RealMonitor is implemented as a DLL, which connects to the
MAJIC probe through the RDIMAJIC.DLL.

From within AXD, this configuration is selected as follows:

1. From the Options menu, select Configure Interface to open the Configure
Interface dialog, shown below.

With the General tab selected, the Target connection box allows you to
select either:

NOHALT keep everything (foreground task and interrupts)
running.

HALT halt the foreground task, but leave interrupts
running.

2. From the Options menu, select Configure target to open the Choose Target
dialog, shown below:

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 29

3 Debug Environment
Select RealMonitor as the target environment. Once RealMonitor is
selected, click on the Configure button to open the a second dialog,
RealMonitor Configuration, shown below. (This dialog allows you to
choose RDIMajic.dll as the JTAG Controller.)

There is no need to click on the Configure button in the RealMonitor
Configuration box, as that opens the RDIMAJIC configuration, which
should already be set up by the RDIMajic.cfg file.

3. Now, click on the OK buttons in each of the dialog boxes to accept the new
configuration.

After this is done, AXD will attempt to connect to the target, but this will
fail because the target does not yet have RealMonitor loaded (BUT - Do
not do this step after RealMonitor is loaded, because if AXD is configured
to connect to the MAJIC probe, this will cause RealMonitor to stop.

Advanced MAJIC Probe Configuration
The MAJIC probe offers a number of advanced options that are not addressed by
the setup wizard because most users don’t need to modify them. However, if you
have a complex target or want to fine tune your debug environment, you can
30 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Debug Environment 3
provide your own initialization script file. This section discusses the commands for
setting options that are not directly supported by the MAJIC Setup Wizard.

Custom Initialization File

When a new startice.cmd file is created with the MAJIC Setup Wizard, the
Target Interface Properties form allows you to include a custom initialization file
by checking Use a Custom Initialization File, and providing the file name in the
field provided (shown in the figure on page 20). If you choose this option, the
wizard creates a command alias named USER_INIT which reads the selected file,
and then uses that alias to run your file. You can re-run the command file at any
time by entering the USER_INIT command.

Examples:

The following example is an excerpt from the startice.cmd file that is created
by the wizard.

Your command file should use MON commands only, excluding run control
commands. Typically, only EO and MC commands are used, but it may be desirable
to initialize your memory controller or MMU with EW commands, as in the
following example. See Chapter 5, MON Command Language, on page 71 for
descriptions of the debug monitor commands.

This example is a sample custom initialization file.

ea USER_INIT fr c MyFile.cmd // USER_INIT reads MyFile.cmd
// command file

USER_INIT // Run initialization command file
MAJIC User’s Manual 0380-0163-10 Rev 2.01 31

3 Debug Environment
NOTE: Empty lines in a command file are equivalent to hitting <Enter> at the
debugger prompt. That is, they may cause the previous command to be repeated, if
it is a “repeatable” command such as Display. Use comment lines instead of blank
lines to improve readability in command files without this side effect.

Configuration Options

Many operating parameters of the debug environment are set through
configuration options. Some of the configuration options control the behavior of
the MAJIC probe, some describe aspects of the target system, and some control the
debugger user interface.

NOTE: Appendix B, Configuration Options, on page 159 provides a
comprehensive list of all the configuration options. In addition, many are more
fully explained in Chapter 4, MAJIC Probe Debug Services, on page 39.

Setting Configuration
Options

Configuration options can be set with the EDB Option Settings dialog, or with the
EO command. The value assigned depends on the specific option: some require a
number, and some require a keyword.

Configuration options can be referred to by their full name, or an abbreviation
comprised of the first character from each part of its name. For example,
Reset_Address and Ice_Jtag_Clock_Freq can be referred to as ra and
ijcf, respectively.

Some examples are listed below (refer to Appendix B, Configuration Options, on
page 159 for details):

dv "Reading MyFile.cmd file\n"

fr rd MyRegDef.rd // Read my register definition file
//
// MAJIC Probe Settings
//

eo semi_hosting_enabled = on

mc ffff0000:p ffffffff:p, pwd, jam // enable access to MEMCTL
// regs

//
// Memory Controller Initialization
//

ew MEMADDR = 14000000 // base address

ew MEMCFG = 4dca // config settings

ew MEMCTL = 8000 // CS enable
//

dv "finished reading MyFile.cmd file\n"

i

i

32 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Debug Environment 3
eo Tv_Ip_Address = 128.192.16.45 /*Sets the static IP address */

eo Trgt_Little_Endian = off /*Specifies big endian mode*/

eo tle = on /*Specifies little endian mode*/

eo Calling_Convention = n32 /*Declare calling convention*/

Configuration Option
Display

EDBICE provides a dialog box for displaying and setting configuration options.
The View/Option Settings menu opens the dialog shown below. To view all
options, select All as the category. To restrict the list to certain classes of options,
select one of the option categories.

To display a table of all the configuration options and their current settings, enter
the DO command with no parameters. To display a particular option, enter a DO
command specifying the option name (or abbreviation). For a more verbose
description of an option, use the DOV command. An * can be used as a wild card to
display all configuration options which exactly match up to the *. For example, the
following command will display all configuration options beginning with ice.

MON> DO // List ALL configuration option settings

MON> DO ice* // List ALL options startice with “ice”

MON> DOV Ice_Jtag_Tap_Select // Show details on this one

MON> DOV ijts // Show details on Ice_Jtag_Tap_Select

NOTE: The DO command’s display, when pasted into a command file, can be
replayed as commands to recreate the configuration.

Memory Configuration

The memory configuration (MC) table provides the MAJIC probe with details about
your memory system. It defines a memory map describing the characteristics of
each range in the physical address space of the target system.

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 33

3 Debug Environment
MC Display The MC table can be displayed with the MC command. An MC command with no
parameters displays the entire memory configuration table. An MC command with
an address range but no attribute specifiers will display that part of the table.

The following figure shows the memory configuration table in the Session
window:

NOTE: The MC display, when pasted into a command file, can be replayed as
commands to recreate the table.

MC Attributes Table

i

Attribute Valid Settings Description

Access
Method

JAM, DMA,
INV

The MAJIC probe can always access memory by
jamming instructions. On some processors, it may be
able to use DMA, which is considerably faster.
Memory regions may also be flagged as invalid in the
MC table; the MAJIC probe will never attempt to
access an address flagged as invalid, although it cannot
prevent your code from attempting to do so.

Partial Word
Access

PWD, PWE The MAJIC probe may be set to enable (PWE) or
disable (PWD) partial word accesses at particular
address regions. This specifies whether the MAJIC
probe may perform accesses that are narrower than the
actual bus width, as specified with the DW=n setting for
that range.

When the MAJIC probe attempts to read a partial word
from an address where partial word access is disabled,
it will first read a data-width-sized word, then extract
the desired part. For writes, it will perform a
read-modify-write operation. This is optimized such
that one command to read several bytes in the same
word only accesses the target once, and writing several
bytes to the same word performs one read and one
write.
34 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Debug Environment 3
Setting MC Attributes The MC command can be used to set an individual attribute, or multiple attributes,
for the specified memory region. When an MC command is entered, only those
attributes specified in the command are changed. All other attributes remain
unaffected.

Before you can set up the memory configuration table, you need to become
familiar with your system’s actual physical memory map. Specifically:

• Where is your ROM, and how big is it?

• Where is your RAM, and how big is it?

• What peripherals do you have, where are they mapped, and are they byte
accessible?

• What other memory mapped resources are there, and how are they
accessed?

Once you have a concise representation of your own memory system, entering it
into the MAJIC probe memory configuration table is easy. Just create a text file
with the appropriate MC commands, and then select it as your custom initialization
file in the Setup Wizard (see Custom Initialization File on page 31).

Examples:

MC *:P,INV /* Flag all physical memory as invalid */

MC 0:P FFFFFF:P,DMA /* Set first 16MB to DMA access */

MC 10000000:P 1000FFFF:P,JAM /* Select JAM mode for this range */

MC *:P, PWE /* Enable partial word access for all
physical memory */

MC 10000000:P 1000FFFF:P,PWD /* Disable partial word access for
selected range */

MC 0:P FFFFF:P, RO, DW=8 /* First Meg is 8-bit read-only */

NOTES:

• Because the MC table describes your physical memory environment,
physical addresses must be used when setting MC attributes. Physical
addresses are specified by appending :P to the address value.

Read-Only RO, RW This flag controls whether MAJIC is allowed to write
to the memory range. When set to RO mode, MAJIC
may read from memory within the range, but will
never write within the range. In RW mode, MAJIC may
read or write within the range.

Data Width DW=8,
DW=16,
DW=32,
DW=64

This option defines the maximum size data transfer
that MAJIC can perform in the given range. Access
requests that are wider than this setting are performed
by reading or writing a block of data-width-sized
objects. This option also controls the transfer size used
by MAJIC in PWD mode transfers.

Attribute Valid Settings Description

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 35

3 Debug Environment
• As MC commands are read or entered, MAJIC probe collates the input
ranges into one map, spanning the entire address space, with no holes or
overlaps.

Sample MC Table Suppose your memory model consists of the following regions:

• 512k of read-only flash memory at 0x1FC00000 in the physical memory
space.

• 1MB of RAM starting at address 0 in the physical memory space.

• 256k of internal scratchpad RAM at 0x10000000 in the physical memory
space.

• Peripherals are located at 0x18000000 in the physical memory space, and
do not support byte writes.

Let us further suppose that the processor you are using supports DMA to external
memory, but not to internal scratchpad RAM, and that you would like to prevent
inadvertent accesses (by the MAJIC probe) to invalid memory regions. The
following memory configuration commands would describe such a system:

MC *:P, INV /* Invalidate all memory, first */

MC 00000000:P 000FFFFF:P, DMA, PWE /* DRAM */

MC 10000000:P 1003FFFF:P, JAM, PWE /* Scratchpad RAM*/

MC 18000000:P 18FFFFFF:P, DMA, PWD /* Peripherals */

MC 1FC00000:P 1FC7FFFF:P, DMA, PWD, RO /* Flash */

The first line defines all memory as invalid. This prevents the MAJIC probe from
attempting to accesses any address in that region (although it cannot prevent your
program from doing so, while it is running).

The second line sets a 1MB region, starting at 0, which may be accessed by DMA,
and supports partial word accesses (PWE). This area is no longer restricted.

The third line represents the internal scratchpad RAM, which must be accessed by
jamming load and store instructions (JAM), since DMA is not supported; partial
word accesses are enabled (PWE) in this area.

The peripheral area is shown on line 4; since the peripherals in this example are on
the external bus, DMA may be used to access them. However, partial word
accesses are disabled (PWD), since these hypothetical peripherals do not support
byte writes.

The boot ROM is shown on line 5; DMA is enabled, since it is on the external bus,
and partial word accesses are disabled (PWD). This range is also marked as
read-only (RO), because flash is not directly writable.

The memory configuration commands would result in the following memory
configuration table:
36 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Debug Environment 3
NOTE: The MAJIC probe may coerce the settings of certain memory ranges to
meet access method restrictions imposed by the target processor. For example,
internal memory mapped registers might not be accessible via DMA, so the
MAJIC probe will always keep such known areas set to JAM mode.

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 37

3 Debug Environment
38 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC User’s Manual 0380-0163-10 Rev 2.01
4
MAJIC Probe Debug Services
The MAJIC Intelligent Debug Probe development environment provides a rich set
of debug services for debugging both hardware and software, and for running
automated test suites. This chapter provides technical details on the debug services
provided by the MAJIC probe:

• Initialization and Management of the JTAG interface

• Resetting the processor and/or target system.

• Reading and writing memory and memory mapped registers.

• Assembling and disassembling code in memory.

• Using the MAJIC probe’s built-in memory test and native MT sample
program.

• Downloading, stepping through, and executing programs.

• Software and hardware breakpoints.

• Command aliases, debugger local variables, and a powerful command file
language allow for building simple or sophisticated test scripts, or creating
user-defined commands.

This chapter also provides examples for each of these features using the MON
command language. The way the MON command language is presented and the
extent of MON support depends on the debug environment. For full details on the
MON command language, see Chapter 5, MON Command Language, on page 71.

Source-level debuggers implement a high-level debug environment utilizing the
MAJIC probe’s debug services. However, not all source-level debuggers
implement all the same features, in all the same ways. Refer to your debugger
documentation for information on its interface to the MAJIC probe.

NOTE: Before attempting to use the MAJIC probe with your target board, you
must take steps to configure it. This process is described in Chapter 3, Debug
Environment, on page 15.

i

39

4 MAJIC Probe Debug Services
JTAG Interface
The MAJIC probe performs debug services by using the target processor’s JTAG
interface to access registers within its Debug Support Unit (DSU). This section
explains the fundamentals of how the MAJIC probe operates the JTAG scan chain.

NOTE: Additional information on this topic is available in the MAJIC Support for
Multi-TAP JTAG Configurations application note (0380-0243-10), available on the
EPI web site.

Target Power Management

The MAJIC probe supports targets that operate over a range of voltage levels. To
do this, it samples the target’s voltage level and recreates that level for its output
drivers. It also sets the threshold levels for receiving signals from the target. The
MAJIC probe expects the selected signal to be pulled up to the I/O voltage of the
target board.

The MAJIC probe monitors a user-selected target signal to determine when the
target system is powered up or down (see Ice_Power_Sense on page 162).The
hardware monitors the level on the selected signal to determine when the target has
been powered up; when the MAJIC probe thinks there is no power, it disables its
target interface output buffers to prevent damage or latch up possibilities. After
software detects that power has been applied, it enables the MAJIC probe’s output
drivers. The CONNECT LED indicates what state the target interface is in
(red=disabled, green=enabled).

If the debug connector on your board has a dedicated pin for this purpose, then it
should be used for sensing power by setting the Ice_Power_Sense option to
VREF.

The MIPS/EJTAG 2.0 specification recommends the RST* pin for power
detection, but if that pin is not provided on your target board, or it is not properly
pulled up, you may use the TRST* pin instead.

The Ice_Power_Sense option may be set to off to disconnect from the target.
When it is re-enabled, the JTAG initialization process will repeat.

NOTE: For details on the target connector, refer to the MAJIC Interface Guidelines
application note for your processor.

JTAG Initialization

When the MAJIC probe detects target power, it resets and initializes the JTAG
interface. This happens when Ice_Power_Sense is changed from off to a signal
with a voltage level that is within the MAJIC probe’s supported voltage range, or
when Ice_Power_Sense is already enabled and the target board is powered up.

i

i

40 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
JTAG Reset The MAJIC probe resets the JTAG interface in one of two ways, depending on the
Ice_Jtag_Use_Trst option. If enabled, the MAJIC probe resets the JTAG
interface by asserting the TRST* pin on the JTAG connector. If disabled, the
MAJIC probe resets the JTAG interface by keeping TMS high for 5 consecutive
TCK cycles. In general, if your target board supports the TRST* pin, EPI
recommends that you use it.

NOTE: EPI recommends that the TRST* pin and the system reset pin be managed
separately on the target board. If your target board asserts TRST* when system
reset is asserted, then you must select the Trgt_Resets_Jtag option so that the
MAJIC probe will expect it.

JTAG Chain
Dimensions

The JTAG initialization process includes several steps. First, the MAJIC probe
must determine how many Test Access Ports (TAPs) are connected on the JTAG
scan chain. It also has to discover how many bits are in the Instruction Register of
each TAP. Usually the MAJIC probe can learn this on its own by scanning a test
pattern through the chain, but if the MAJIC probe reports that the automatic JTAG
detection process failed, then you may need to declare the JTAG configuration of
your board.

When necessary, you can declare the number of TAPs on the JTAG scan chain, and
number of instruction register bits in each, by writing a descriptor to the
MAJIC_JTAG_DIMENSION buffer (within the MAJIC probe). The first word in the
descriptor specifies the number of TAPs in the JTAG chain and hence the number
of words to follow in the descriptor. The remaining words are the number of bits in
each TAP’s instruction register. Note that TAPs are numbered starting from the one
whose TDO signal is connected to the MAJIC probe.

For example, if your system has three TAPs, the first with 38 instruction bits, the
second with 4, and third with 8, you could declare the JTAG parameters by setting
the MAJIC_JTAG_DIMENSION descriptor as follows:

ew MAJIC_JTAG_DIMENSION = 3, 0n38, 4, 8

NOTE: If the MAJIC_JTAG_DIMENSION descriptor is required, it must be set
before the target power monitor senses target voltage. Therefore, you should select
off for Ice_Power_Sense in the MAJIC Setup Wizard, and read a custom
initialization file (see Specify Your Configuration Files’ Location on page 19).
Your custom initialization file should set the MAJIC_JTAG_DIMENSION buffer
first, then finally set the Ice_Power_Sense option, as in the following example.

Example:

i

i

FR RD MAJIC /* Register Definition file for MAJIC probe registers */

EW MAJIC_JTAG_DIMENSION = 3,0n38,4,8 /* Set JTAG Dimension
 descriptor */

EO Ice_Power_Sense = VREF /* Enable power monitor */
MAJIC User’s Manual 0380-0163-10 Rev 2.01 41

4 MAJIC Probe Debug Services
User JTAG
Initialization

Some target systems require a special initialization sequence. For example, it may
be necessary to enable the debug support unit of a given device before the MAJIC
probe attempts to access it. Or if an SoC incorporates a hierarchical TAP
organization, it may be necessary to reconfigure the JTAG connection within the
device to make the processor’s DSU accessible.

When necessary, you can provide such initialization sequences by writing a
descriptor to one of two initialization buffers. The MAJIC_JTAG_INIT0
descriptor, if set, will be used as the first JTAG operation after each JTAG reset.
This descriptor must be used if the operation will change the organization of the
JTAG chain. The MAJIC_JTAG_INIT1 descriptor, if set, will be used as the first
JTAG operation after the JTAG chain dimensions are determined. This descriptor
should be used if the operation does not change the JTAG chain dimensions. It is
possible to use both.

The User JTAG Initialization descriptor consists of the number of IR bits to scan,
then the IR bits themselves, then the number of data bits to scan, then finally the
data bits. Note that this describes an entire JTAG operation, so it must take all
TAPs in the chain into account.

For example, the following command describes a JTAG operation with 11
instruction bits whose values are 111_1101_1111, and 64 data bits that are all
zeros.

ew MAJIC_JTAG_INIT1 = 0n11, 0x7DF, 0n64, 0, 0

NOTE: If a special JTAG initialization sequence is required, then it must be set
before the target power monitor senses target power. Therefore, you should select
off for Ice_Power_Sense in the MAJIC Setup Wizard, and read a custom
initialization file (see Specify Your Configuration Files’ Location on page 19).
Your custom initialization file should set the MAJIC_JTAG_INIT0 and/or
MAJIC_JTAG_INIT1 descriptor first, then set the Ice_Power_Sense option, as
in the following example.

Example:

TAP Selection Once the MAJIC probe knows how many TAPs there are, it needs to know which
one corresponds to the processor under test. If there is only one TAP, then the
answer is obvious, so the MAJIC probe simply connects to it automatically.

However, if there are multiple TAPs, then the MAJIC probe needs to know which
one to use. The number of TAPs can be checked with the Ice_Jtag_Tap_Count
option. The TAP is selected by setting the Ice_Jtag_Tap_Select option. This

i

FR RD MAJIC /* Register Definition file for MAJIC probe registers */

EW MAJIC_JTAG_INIT0 = 0n11,0x7DF,0n64,0,0 /* Set JTAG Init0
buffer */

EW MAJIC_JTAG_INIT1 = 0n11,0x7DF,0n64,0,0 /* Set JTAG Init1
buffer */

EO Ice_Power_Sense = VREF /* Enable power monitor */
42 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
option is not directly supported by the MAJIC Setup Wizard, so you should place a
line such as the following in a custom initialization file and then select it in the
MAJIC Setup Wizard (see Specify Your Configuration Files’ Location on page 19).

eo Ice_Jtag_Tap_Select = ___

NOTES:

• The Ice_Jtag_Tap_Count and Ice_Jtag_Tap_Select options are
only valid after target power has been sensed, and the MAJIC probe knows
the JTAG chain’s dimensions.

• TAPs are numbered from 1, starting with the TAP whose TDO is
connected to the MAJIC probe.

When debugging multi-processor targets, EPI recommends using a custom
initialization file to define command aliases for selecting each processor (see
Advanced MAJIC Probe Configuration on page 30). That way users can select the
CPU they wish to connect to by a name they can identify instead of having to
remember their positions on the JTAG chain.

For example, if the command file below is read during initialization, then the user
can select the CPU by simply entering its name as a debugger command.
Alternatively, you could create separate start up files for each CPU and
automatically select the CPU in each.

Example:

Reset Management
The MAJIC probe has the ability to reset the processor and/or target system upon
command from the user. However, the specific capabilities depend largely on your
target processor and target system design.

Conceptually, the CPU is reset, and the program counter (PC) is set to the address
specified by the Reset_Address option (which may or may not be the actual
reset vector). By overriding the reset vector and changing your linker command
file to match, you can download and debug your boot code in RAM, thereby
eliminating the need to reprogram your boot ROM on every rebuild.

i

ea CPU_CTL eo ice_jtag_tap_select = 4

ea CPU_IO1 eo ice_jtag_tap_select = 7

ea CPU_IO2 eo ice_jtag_tap_select = 6
MAJIC User’s Manual 0380-0163-10 Rev 2.01 43

4 MAJIC Probe Debug Services
Reset Processor vs. Reset Target

The MAJIC probe provides two different reset functions: a processor reset, which
is performed via a JTAG command, and a target system reset, which is performed
by asserting the system reset signal on the JTAG cable (providing that the reset
signal is implemented by the target system). In cases where the processor does not
provide any means of reset via the JTAG port, the MAJIC probe will simulate a
processor reset by setting those registers that are affected by a reset to their defined
state.

The Ice_Reset_Output option controls whether the MAJIC probe performs a
processor reset or target reset when a reset (R) command is issued, or when the
program is downloaded. In addition, separate reset commands are provided to
directly reset the processor (RP) or target system (RT).

NOTES:

• The target reset feature relies on support by your target system.
Specifically, the system reset pin on the JTAG connector (not to be
confused with TRST*) should be connected so as to reset the board,
including the CPU. On processors with both hard and soft resets (or cold
and warm resets), the soft or warm reset should be asserted.

• If the target system’s reset controller asserts the processor’s TRST* pin as
well as the system reset pin, then the Trgt_Resets_Jtag option must be
set (as described on page 167).

• After resetting the target system, it may be necessary to reinitialize your
memory controller prior to accessing memory.

Resetting Internal Peripherals

When the MAJIC probe resets a MIPS/EJTAG processor with a JTAG command, it
normally resets only the processor, not the internal peripherals. However, if the
Ice_Reset_Peripheral option (described on page 162) is enabled, the MAJIC
probe sets the EJTAG control bit to reset internal peripherals as well.

NOTE: This feature relies on support by the processor and target system design.
This feature is not well defined in the EJTAG standard. Please check your
processor documentation for information on how it implements the reset peripheral
operation.

Accessing Memory and Registers
Source-level debuggers usually have various windows for viewing and editing the
contents of registers and memory. The MAJIC probe services read and write
requests from the debugger as the user works with those windows, just as it does
for the MON examples in the following sections.

i

i

44 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
Display and Enter

To display or enter the contents of a CPU register, CoProcessor register, or
memory location, MON provides the Display (D) and Enter (E) commands. These
commands can be qualified by size, as follows:

The location for which a value is displayed or entered can be a register number or
name, a virtual or physical memory address, or a symbolic name representing a
memory address (see Address Expressions on page 48). After displaying a register,
memory location, or range of either, simply pressing <ENTER> will advance the
display.

An address range may be specified as a start address and end address, or as
“start L count”. The format of the display or entered data (hexadecimal,
ASCII, instructions, ...) can be controlled by appending “, fmt” to the command
line, where fmt is a letter specifying the desired format (the format operand is
described on page 131).

Examples:

dw sp /* Display stack pointer */

dw r0 r7 /* Display r0 through r7 */

dw 0 /* Display address 0 in virtual space */

dw 0:P /* Display address 0 in physical space */

dw 8000 L 40 /* Display 40 words starting at 0x8000 */

dw main L 10,i /* Display 10 instructions starting at main */

db @str_ptr,s /* Display string pointed to by str_ptr */

ew r8 = 816E /* Set r8 to 0x816E */

ew var = 0n1000 /* Set var to 1000 decimal*/

ew var,d = 1000 /* Set var to 1000 decimal*/

h addr /* Help on addresses */

h fmt /* Help on data formats*/

NOTE: The fmt operand is one exception to the general rule that commands are
not case sensitive.

Command Name Modifier

DB EB Display/Enter Byte

DH EH Display/Enter Half-Word (16-bit)

DW EW Display/Enter Word (32-bit)

DD ED Display/Enter Double-Word (64-bit)

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 45

4 MAJIC Probe Debug Services
Bit Fields When a register containing bit fields is displayed in hexadecimal mode (which is
the default display mode in MON), the value of each bit field is displayed as well.
Single-bit fields in which the bit is set to 1 are displayed with their name in upper
case, and Single-bit fields in which the bit is 0 are displayed with their name in
lower case. Fields with more than one bit show the field name and value in
hexadecimal. It is also possible to read and write bit fields directly by appending
the field name to the register name.

Example:

NOTE: EPI debuggers and the MAJIC probe library for third party debuggers have
built-in knowledge of the registers supported by each CPU type. You can also
define register names and fields for registers that are unique to your own hardware
through a register definition file. See Register Definition File on page 23 for
details on how to define your own registers.

Interactive Mode If no data (or instruction) is provided in an Enter command, MON will display the
first location and then prompt for the value to enter there, and then advance
interactively as each datum is entered. This technique is particularly useful when
poking instructions into memory (see MIPS Mini Assembler on page 47).

Entering a backslash (\) at this prompt leaves the current location unmodified, and
backs up the display by one line. Entering a period (.) at this prompt exits
interactive mode, and returns to normal command processing mode. If the enter
command specified a range, as opposed to a single address, then interactive mode
is automatically terminated when the end of the range is reached.

MON> dw cpsr // ARM7 Current Processor Status Register
.cpsr 000000D3 (n z c v F I t mode=svc)

MON> dw cpsr.f // Display FIQ bit
.cpsr.f 00000001

MON> dw sr // MIPS Status Register (display varies between CPU types)
.sr 00440000 (cu=0 re icd dcd BEV nmi cm SR isc im=0

 swm=0 kuo ieo kup iep kuc iec)

MON> ew sr.im = 2 // Set IM field to 2
MON> dw sr.im

.sr.im 00000002

i

46 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
Example:

MIPS Mini Assembler When the EW format qualifier “i” is specified, the mini-assembler is invoked. The
mini-assembler supports all standard machine level instructions defined in the
MIPS RISC Architecture manual, and some higher level macro instructions (as
long as they assemble into one machine level instruction). The default number base
for fields follows the MIPS conventions, which is often decimal, except on jump,
branch and a few other instructions. The recommended approach is to use 0x in
front of any hex constant and not rely on the default radix.

For the general registers, the mini-assembler accepts both the “hardware” names
and “software” names, except that the names must not be preceded with a dot “.”.
In addition, the standard MIPS $n notation is accepted. Coprocessor registers may
only be referred to by their $n names, except for floating point registers which
also accept the fn and dn notation.

The mini-assembler is not a full assembler in that it does not provide any
directives, symbolic constants, macros and the like. But unlike the assemblers
provided with most debuggers, the mini-assembler does support local statement
labels and existing global symbols. Statement labels and global symbols can be
used whenever a constant is called for.

Local statement labels take the form $Ln, where n is from one to five decimal
digits having a value less than 32767. A statement label is defined when the label,
followed by a colon, begins an instruction statement. References to the label do not
include a colon, and may occur before or after the label is defined. Labels can be
referenced in one invocation of the Enter command and defined in a later
invocation, but they are not accessible outside the context of the mini-assembler.

Once defined, a label retains its value until the debug session is terminated.
Re-definitions of an existing label are not allowed, even if the value is exactly the
same. Until a label is defined, instructions that reference the label are assembled
with the value zero.

NOTES:

• No warning is given if labels remain undefined when code execution is
begun with the Step or Go commands.

• The mini-assembler does not currently support MIPS16 instructions.

MON> ew A0001234

a0001234: 00000000 ? 11223344

a0001238: 00000000 ? 5566788

a000123c: 00000000 ? \

a0001238: 05566788 ? 55667788

a000123c: 00000000 ? 12345678

a0001240: 00000000 ? .

MON> dw a0001234 L 4

a0001234: 11223344 55667788 12345678 00000000

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 47

4 MAJIC Probe Debug Services
Example:

Address Expressions

An Address Expression combines addresses using Address Operators (described
on page 49). Parenthesized sub-expressions are allowed. An Address consists of
an offset and optionally a space designator. An offset is a 32- or 64-bit value,
giving the byte address of an object relative to the start of a space.

There are three classifications of addresses: external (memory mapped) addresses,
register addresses, and “debugger local” addresses. External addresses reference
data and instruction memory, or memory mapped devices. These addresses can
include virtual address segments, and physical (main) memory. Register addresses
reference the processor’s General Registers, Coprocessor Registers, and special
registers. Refer to Debugger Local Variables on page 66 for a description of the
debugger local address space.

NOTES:

• Hexadecimal is the default base for addresses. However, symbolic names
take precedence over register names, which take precedence over address
values, where ambiguity exists.

For example, DW a0 will display the symbol named a0, if there is one, or
register a0, if there is no a0 symbol but there is an a0 register, or memory
location a0 if it is not a symbol or register. Prepending 0x or a period
eliminates this ambiguity: DW 0xa0 will display memory location a0, and
.a0 will reference the register.

MON> ew 2000:1,i

a0002000: 000a0002 srl zero,t2,0

? j $L3000

a0002004: 004a0002 srl zero,t2,0

? lui r5, 0x1fc0

a0002008: 008a0002 srl zero,t2,0

? \

a0002004: 3c051fc0 lui a1,0x1fc0

? lui r5, 0xbfc0

a0002008: 008a0002 srl zero,t2,0

? jr r5

a000200c: 00ca0002 srl zero,t2,0

? $L3000: nop

a0002010: 010a0002 srl zero,t2,0

?

a0002014: 014a0002 srl zero,t2,0

? .

i

48 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
• The way the MAJIC probe accesses target memory is controlled by the
Memory Configuration table. Setting this table to match your target
system’s memory layout is covered in Setting MC Attributes on page 35.

ARM Addresses The ARM architecture defines a flat 32-bit address space. Therefore, a memory
address is entered simply as a hexadecimal number. Physical addresses are
specified by appending :P. ARM register names are given in the table in ARM
Register Names on page 136.

Examples:

dw cpsr /* Display current processor status register */

dw 1234 L 10, i /* Display first 10 instructions from 1234 */

dw 1C00:P /* Display word at 1C00 in physical memory */

MIPS Addresses The MIPS architecture defines memory in terms of virtual address segments (for
example kseg0 and kuseg) mapped into a common physical address space. Virtual
addresses may be entered directly (e.g. 80000080), or as the offset within a
segment (e.g. 80:0 is offset 80 in kseg0, which is 80000080). Physical addresses
are specified by appending :P.

Registers may be referred to by their number, or conventional name (for example
r31 or ra). For a listing of space designators see Address Space Designator on
page 138. MIPS register names are given in the table in MIPS Register Names on
page 135.

Examples:

dw sr /* Display status register */

dd 1C00:0 /* Display double word at offset 1C00 in kseg0 */

dw 1C00:P /* Display word at 1C00 in physical memory */

eh 1C00:1=1234 /* Enter 0x1234 at half-word 1C00 in kseg1 */

dw 0:r L 10, i /* Display first 10 instructions at the reset vector */

h addr /* Help on address expression syntax */

Address Operators In general, address expressions use standard C operators (described in Expression
on page 129). However, the indirection operator is @, rather than the normal C
operator *. This is because the operation is not exactly the same: @ means “fetch
the address at”, so a full word or double word will always be fetched depending on
the processor type. @.digit addr causes digit bytes (1, 2, 4, or 8) to be fetched
from the specified address.

Examples:

main + 20 // Location 32 bytes after the symbol main.

@R2 // Location in memory whose virtual address is in R2.

@PC // Location of the next instruction to be executed. Indirection
// through .PC is especially useful. The command
// DW @PC L 10,i will disassemble the 10 instructions
// beginning with the next instruction to be executed.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 49

4 MAJIC Probe Debug Services
@.1SP // The byte at the stack pointer.

@RA // After reaching a breakpoint set at the start of a function,
// G @RA could be used to continue execution until the
// function returns to the caller.

@ptr // Virtual address pointed to by the value at the location
// defined by the symbol ptr.

(@ptr+5*4) // ptr is a symbol that describes a location in some address
// space. This expression fetches the word at that location and
// adds 20 (decimal) to it.

(@ptr)|8 // Value at ptr or’ed with 8.

NOTE: All arithmetic and comparisons are performed in unsigned 64-bit integer
mode, even if the operands appear signed. For instance, -1 is treated as the
unsigned value 0xffffffffffffffff. This also means that the right shift
operation always zero fills the high order bits.

Searching Memory

The display commands also serve as memory search commands, when a value list
is appended. The search starts from either the start of the specified range, or the
end, and displays the first match that it finds. Optionally, a mask value or pattern
may be specified to compare only certain bits. Pressing <Enter> continues
searching the original range from where it left off. Refer to Display/Find Data on
page 81 for details on specifying search direction, search patterns, and masks.

Examples:

DB messages L 4096,s = ”ERROR” // search for ERROR starting at
 // messages.

DB messages L 4096,s = ”ERROR” #df // case insensitive search

DW 80000000 8000FFFF = 80000000 #f0000000
// Find first word in 64K range with 8 in the upper
// four bits. (Press <Enter> to find successive matches)

Moving Data

MON provides commands for moving data between target resources. The source
data and destination address do not need to be in the same address space. For
example, registers can be dumped to or loaded from memory by the Move
command.

The data is normally copied forward from the starting addresses in the source and
destination ranges, one type-sized piece at a time, with the predictable destructive
effect if the source and destination overlap. A reverse move copies the data
backwards from the ending address in the source and destination ranges. In this
case an overlapping upward move will be non-destructive, while an overlapping
downward move will be destructive.

i

50 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
Examples:

mw r0 r3, r4 // move registers r0..r3 to r4..r7.

mw 80001000 L 4, r1 // move four words from memory to
 // registers r1..r4.

mb 1000 10fe,1001 // fill 1001 through 10ff with byte from 1000.

mrb 1000 10fe,1001 // move-reverse, by byte, non-destructively.

Filling Memory and Registers

The Enter commands described in Display and Enter on page 45 are also used for
filling memory and registers by providing an address range instead of a single
address. If the address range is larger than the value list, a move operation is used
to replicate the fill pattern as necessary to fill the range.

Examples:

EW r0 r7 = 0 // clear 8 registers

EW 0 fffff = 0 // clear 1MB of RAM

EB 1000 1FFF = 1,2,4,8 // fill range with pattern

Memory Test

The MAJIC probe provides a robust set of memory tests to verify the operation of
the target memory system. A test may be repeated a set number of times, or loop
continuously until stopped by the user, or optionally until an error is detected.

These tests are implemented by the MAJIC probe, and may be accessed with the
MT command. They are also provided in a program named ntv_mt (native MT)
which can be downloaded to, and run on the target system.

NOTE: The EDTM software for using the MAJIC probe with MIPS processors
includes two versions of native MT in the samples directory, one linked in kseg0
and one in kseg1.

The MT command specifies address range, test, mode, and pass count (see Memory
Test on page 113). Native MT prompts for the same information in the EDB
program I/O window or MON command line.

There are four mode flags that control the operation of the memory test feature. In
quiet mode, the normal end-of-pass messages (i.e. number of passes completed)
are suppressed. In silent mode, all messages except the end-of-test message are
suppressed. Verbose mode displays a status message identifying each test before it
starts. If an error is detected in halt-on-error mode, the debugger asks the user if
testing should be aborted. Memory test failure messages are displayed in
halt-on-error mode, even if silent mode is also enabled.

Example:

H MT // Help on Memory Test syntax and options

MT ram_base ram_bound, 9, HV, 1

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 51

4 MAJIC Probe Debug Services
Basic Patterns Test #1 walks through the specified address range in ascending order, writing a test
pattern to each location, and verifying that it was correctly written. Once the range
has been filled and checked, the MAJIC probe makes another pass to check that the
correct data is still present, then stores the one's compliment of the pattern and
verifies that it was correctly written. Then the same range is tested in descending
order.

The whole process is repeated for each of the following six patterns:

00000000 FFFFFFFF AAAAAAAA
55555555 01234567 89ABCDEF

Walking Ones and
Zeros

In test #2, the MAJIC probe starts by filling the requested memory range with 0.
Then it performs a walking ones test on each location by writing and verifying a 1,
then shifting left one bit to yield 2, and so on until the bit is shifted past bit 31.
After all 33 patterns have been tested, FFFFFFFF is written, and the address is
incremented. When the end of the range has been reached, another pass is made
with a walking 0 pattern.

Rotating Address In test #3, the MAJIC probe fills the entire range, in ascending order, by writing the
address of each location to itself. Then it reads and verifies the entire range. This
is repeated eight times, with the values to be written being rotated by four more
bits on each pass. Then the whole process is repeated in descending order.

Complimented Rotating
Address

In test #4, the MAJIC probe fills the entire range, in ascending order, by writing the
one's compliment of each address to that address. Then it reads and verifies the
entire range. This is repeated eight times, with the complimented address values
being rotated by four more bits on each pass. Then the whole process is repeated
in descending order.

Partial Word Access Test #5 verifies byte and half word accessibility in the specified address range.
Each word in the specified range is tested by writing 11, 22, 33, and 44 to the four
bytes in that word, then reading the whole word and comparing it to 11223344.
Then EEDDCCBB is written to the same word, and each byte is read back and
verified. The half word test is similar: 1234 and 5678 are written, the word is read
and checked, then EDCBA987 is written and both half words are verified.

NOTE: When reading a byte or half-word from an address where partial word
access is inhibited (via the memory configuration command), the MAJIC probe
reads a word and extracts the portion of interest. Similarly, when writing a byte or
half-word to such an area, the MAJIC probe performs a read-modify-write
accesses. Of course, the test will still pass if partial word access is not enabled, but
partial word accessibility is not actually checked in this case.

Refresh In test #8, the MAJIC probe tests the data retention capability of the specified
address range. First it fills and verifies the entire range with a test pattern. Then it
waits the specified time period, and rechecks the range. This is repeated with each
of the test patterns used in the basic patterns test.

i

52 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
Combination In test #9, the MAJIC probe cycles through the basic patterns test, walking bits
test, rotating address test, complimented rotating address test, and partial word test.

Oscilloscope Loops Three memory access oscilloscope loops are provided: read (test #10), write (test
#11), and write-then-read (test #12). The MAJIC probe loops through the specified
address range, performing the memory accesses as fast as possible, without
verifying the data. On the write only and write-then-read tests, the data pattern is
complemented before each write access to help illuminate bus timing problems.

Program Execution
EDBICE provides a better environment for debugging programs written in C, but
MONICE can also download and debug such programs. Although MONICE is not
source code aware, it does provide symbols for global functions and variables, and
can display a call stack summary if execution stops within a C context.

Downloading Executable Programs

The details of downloading a program vary widely depending on which debugger
you are using. The following sections explain how to download a program
executable (ELF or COFF file), a binary memory image file, and an S-Record file
with MONICE and EDBICE.

If you are using another debugger, please refer to the documentation that came
with that debugger for information on how to download files in that environment.

ELF and COFF Files The download process normally starts with a reset operation (see Reset Processor
vs. Reset Target on page 44), and then the current execute location (PC) is set to the
user configurable value in the Reset_Address option. This is because it is
usually desirable to start from the reset vector (real or overridden via
Reset_Address) after a program download. However, it is possible to inhibit the
reset operation by turning off the Reset_At_Load option, for cases where reset is
not desirable.

Then the program image is downloaded to target memory. Lastly, if the
Load_Entry_Pc option is enabled and the program executable provides an entry
point indication (usually set by the linker), then the PC will be set automatically to
the program’s entry point.

Downloading with
EDBICE

In EDBICE, the Program to Debug selection in the File menu is used to select the
program to debug. It is important to note, however, that the program is not actually
downloaded at this time. Only the symbolic information is read.

NOTE: When you select the application program, EDBICE runs the cdbtrans
utility to convert the application’s debug information from your native compiler’s
debug format into the format EDBICE uses. This data is stored in the file created
by taking the base-name of your application program and adding .cdb. Once this

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 53

4 MAJIC Probe Debug Services
file is created, the conversion step is not done again until your application program
changes.

The download operation is performed when the Load button is pressed, or the first
time you step or start execution. The download operation is repeated on the first
GO or single step after hitting the Restart button or selecting a different program.
The section types to download can be selected in the Edit/Properties menu. To
verify the downloaded image integrity, use the Exec menu and choose Verify Load.

Downloading with
MONICE

The L (Load) command initiates the download process, as described in ELF and
COFF Files on page 53. Normally all program sections are downloaded, but
specific section types can be downloaded or omitted with switches on the L
command line (see Load on page 109).

The VL (Verify Load) command is used to verify a program load. When no
arguments are specified, all sections of all files previously downloaded are
uploaded and checked against the original executable files. Optionally, you can
verify only selected section types (see Verify Load on page 122).

The LN (Load Names) command reloads symbols for the current program, or loads
symbols for the specified files. The new symbols will replace any existing symbols
by default, or they can be added to the existing symbols.

Examples:

L my_prog // load my_prog
VL // verify download, all sections
VL -o tl // verify only text and literal sections
LN new_prog // load symbols from new_prog

NOTES:

• The L, VL, and LN commands are not available in EDBICE. Instead,
programs are downloaded as described in Downloading with EDBICE on
page 53.

• The load commands are available in EPI’s debugger libraries, but in
general it is best to use the program download service provided by your
debugger. However, it may be useful to use the LN command so the MON
environment has access to symbolic information, and in certain cases it
may be better to download from the EPI library instead of the third party
debugger.

Hex and Binary Files It is also possible to download binary images or S records with the FR M (File
Read, Memory) command, or save a memory range to a binary file with FW M
(File Write, Memory).

Examples:

fr m file.hex // load a hex file into addresses embedded
// therein

fr m file.bin 1000 // load a binary image starting at 1000
fw m file2.bin 0 3fff // write a 16K image from address 0 to

// the file file2.bin

i

54 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
NOTES: The FR M command does NOT initiate the download process described
above, it just performs the series of write operations required to transfer the file
contents into memory. There is no way to verify a download of this type, except to
use FW M to create a temporary file and then use a file compare utility.

Download
Performance

The MAJIC probe is optimized to sustain a very high transfer rate between the host
computer and target system, but to realize the maximum possible download rate,
you need to do your part. When working with a large program file, consider the
following:

• Choose the fastest communication method available. If that is a serial
port, use the highest baud rate you can.

• Download only those sections that you actually need to, especially when
reloading the program (select Program Options from the Edit/Properties
menu). By adding a BSS clearing loop to your boot module (typical in the
ARM environment), you can avoid downloading that section.

• Make sure to select the highest JTAG clock rate supported by your target
processor (see Ice_Jtag_Clock_Freq option, described on page 161).

• If your processor supports DMA via the JTAG port, make sure the MAJIC
probe is set to use it wherever possible (see Memory Configuration on
page 33).

• The EPI linker can compress specified sections, and add a decompression
function to your boot code. Taking advantage of this feature will reduce
download times.

Single Stepping

Single stepping is the process of executing one instruction at a time, so that the
state of the system can be examined after each instruction. Depending on the
capabilities of the processor’s debug support unit, the MAJIC probe can use either
of two techniques for the basic stepping mechanism. If the processor provides
hardware for single stepping, the MAJIC probe will take advantage of that.
Otherwise the MAJIC probe predicts the next address, sets a breakpoint there, and
executes to it. Then it builds upon the basic step function to support the various
stepping features described below.

NOTES:

• The behavior when stepping in a source-level debugger depends on how
the debugger implements its step functions. Refer to your debugger’s
documentation for information on how it implements its stepping features.

• During single stepping, the pipelined effect of instruction execution is
defeated. That is, each instruction is fully executed in isolation before
proceeding to the next.

• When a MIPS branch instruction which has a delay slot is stepped, the
delay slot instruction is also executed as part of the step; either advancing
to the branch destination, or if it was a conditional branch that was not
taken, the next sequential address following the delay slot.

i

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 55

4 MAJIC Probe Debug Services
Source Stepping with
EDB

Regardless of the execution window’s display mode (source, assembly, or both),
EDBICE provides both source-level stepping and instruction level stepping, into
and over function calls. This makes it possible, for example, to display source code
interleaved with assembly, but step by source line. The execution toolbar provides
separate buttons for each step mode.

The way that interrupts and exceptions are managed while stepping can be altered
for different debug situations. The Edb_Step_Forward_Mode option selects
between stepping into exceptions or stepping over exceptions (referred to as step
forward mode). If an exception is raised during a step forward operation, the entire
exception handler is executed as part of the step, unless a breakpoint is hit along
the way. Use the Option Settings button on the main tool bar to set this option.

NOTES:

• In some cases, EDB uses breakpoints to perform single stepping. When
stepping through ROM with such a processor, one or more hardware
breakpoints must be available in order to step.

• The first time execution is started or stepped after selecting the program to
debug or doing a restart, the program image is downloaded (see
Downloading with EDBICE on page 53).

Instruction Stepping Instruction stepping is performed by restoring the processor’s context as if
preparing for execution, then executing one instruction. After stepping, the context
of the processor is unloaded again so the user can observe the effects of executing
that instruction.

In MONICE, the S command is used for instruction stepping. In EDBICE, the
Edb_Step_Forward_Mode option controls whether instruction stepping or
step-forward mode is used.

Examples:

s // step 1 instruction

s =boot // step instruction at boot

Step Forward Mode If an interrupt is pending when the MAJIC probe steps an instruction, then the
processor steps into the exception handler. Depending on the specific processor,
the stepped instruction may execute first, or it may be preempted by the interrupt
request. Similarly, if the stepped instruction raises an exception, the program will
enter the exception handler.

The MAJIC probe provides Step-Forward mode to single step through the
foreground program. Before each step, the MAJIC probe predicts the next PC. If
an exception or interrupt occurs, then the predicted address is not reached, so the
MAJIC probe sets a temporary breakpoint at the predicted address, and program
execution is started from the exception vector. When execution stops, the context is
saved as normal. If the temporary breakpoint set above was hit, then one step has
been completed. If execution stopped for any other reason, stepping is aborted, and
the new PC is reported.

i

56 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
In MONICE, the SF command is used to step forward. In EDB, the
Edb_Step_Forward_Mode is used to select step-forward mode while stepping.

Examples:

SF // step forward by 1 instruction

SFQ 99 // step forward 99 times, quietly

SFV 99 // step forward 99 times, verbosely

NOTE: This feature relies on setting breakpoints. Software breakpoints are used
when stepping through RAM, and hardware breakpoints are required when
stepping through ROM.

Stepping Over Calls It is often desirable to step through a high level function without having to step
through each of the subroutines called by that function. The MAJIC probe provides
a third method of stepping, called Step Over (MONICE SO command), which
allows this. It works essentially the same way as Step Forward mode, but the
breakpoint is set at the return address if the stepped instruction was any form of a
call instruction.

Examples:

SO // step over 1 instruction or function

SOQ 16 // step over 16 instructions or functions, quietly

SOV 16 // step over 16 instructions or functions, verbosely

NOTES:

• This feature relies on setting breakpoints. Software breakpoints are used
when stepping through RAM, and hardware breakpoints are required when
stepping through ROM.

• EDBICE does not use the MAJIC probe’s Step-Over service. It uses either
normal instruction stepping or Step-Forward mode (depending on the
Edb_Step_Forward_Mode option) until it steps into a subroutine, then
runs to a temporary breakpoint at the return address.

Step Command List in
MONICE

The MONICE step commands allow a command list to be specified, which will be
executed at the end of the single (or multiple) step. Thereafter, the command list
will be repeated after each step command completes, or when execution stops on a
breakpoint. To clear the command list, use a step command with an empty
command list.

Examples:

S {dw r0 L 8} // step, then display eight registers

S 10 // step ten times, then repeat command list

S { } // step and clear command list

S {if (@my_var < 0n100) {S}} // Step repeatedly until my_var >= 100

i

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 57

4 MAJIC Probe Debug Services
Multi-stepping with
MONICE

MONICE supports multi-stepping by including a count with the step command. It
is even possible to step-forward or step-over repeatedly. Quiet mode multistepping
(SQ command with a step count) is handled by stepping repeatedly, until the
terminal count is reached, a breakpoint is encountered, or a stop request is issued
from the debugger. Only when stepping finishes will the new PC and instruction be
displayed.

In verbose multistepping (SV command with a step count), discrete single steps are
performed until the terminal count is reached or a stop request is issued from the
debugger. After each step, the new PC and instruction at that address is displayed.
Breakpoints are inhibited during verbose multistepping.

A step (S) command that does not specify verbose or quiet mode retains the mode
most recently specified (quiet, initially).

Examples:

SQ 5 // step quietly 5 times

S 5 // step 5 more (still quietly)

SV 10 // step verbosely 10 times

S 10 // step 10 more times (still verbosely)

SFQ 500 // step-forward quietly 500 times

SOV 500 // step-over verbosely 500 times)

Breakpoints

The ability to stop the processor automatically at a specific point in a program is
called a breakpoint. Execution may also be stopped manually at any arbitrary time
with the ^BREAK key in MONICE, or the STOP button or menu command in
source-level debuggers.

The MAJIC probe uses two techniques to trigger a breakpoint. The first, called a
software breakpoint, places a special instruction at the specified address prior to
starting execution. The original instruction at that location is saved and then
restored when execution stops. The second type, called a hardware breakpoint,
involves using the breakpoint features present in the processor as a trigger to stop
program execution.

Examples of using software breakpoints in MONICE are provided below. For
information on using software and hardware breakpoints with a source-level
debugger, refer to your debugger’s documentation.

Pass Counts When execution stops on a breakpoint, the MAJIC probe checks the breakpoint’s
pass count. If the pass count has been reached, it notifies the debugger that
execution has stopped. If the pass count has not yet been reached, the MAJIC
probe restarts execution as quickly as possible.

NOTE: Many source-level debuggers implement pass counts themselves instead of
using the MAJIC probe’s pass count support.

i

58 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
Software Breakpoints Software breakpoints are implemented by temporarily replacing the instruction at
the breakpoint location with a breakpoint instruction. When the processor executes
the breakpoint instruction, it stops executing instructions and notifies the MAJIC
probe, and in turn the debugger.

NOTES:

• In order to set a software breakpoint, it must be possible to modify the
memory in the target system. Thus a software breakpoint cannot normally
be placed in code executed from ROM. However, for certain processors,
software breakpoints in ROM are supported by locking them into the
instruction cache. To enable this feature, set the Ice_Cache_Rom_Bp
option to on prior to setting the breakpoint (see page 161).

• If a software breakpoint is set in non-writable memory, and
Ice_Cache_Rom_Bp is off or unsupported by the processor under test,
then the breakpoint is automatically converted to a hardware breakpoint, if
possible.

• If no breakpoint is set at the address where execution stops, then it is
reported as an “unrecognized breakpoint”. This may happen if the program
hits a breakpoint instruction that is hard coded (as opposed to one set with
the debugger), or if a memory alias causes a breakpoint set at one location
to appear in another.

Breakpoint
Commands in
MONICE

The BS (Breakpoint Set) command sets or changes a software breakpoint, with
optional pass count, and an optional command list to be executed when the
breakpoint is hit. If the command is entered without parameters, a breakpoint is set
at the current PC.

The BL (Breakpoint List) command displays a list of all breakpoints currently set,
showing the break address, initial pass count, remaining pass count, whether or not
it’s active (enabled), and the associated command list (if any).

The BC (Breakpoint Clear) command clears one or more software breakpoints
previously set with the BS command. To temporarily disable a breakpoint, use the
-B and +B commands instead.

Examples:

BC * // clear all breakpoints

BC my_sym // clear breakpoint at my_sym

BS // set breakpoint at current PC.

BC // clear breakpoint at PC

BS 400 // set breakpoint at 400

BS my_label // set breakpoint at my_label

BS @RA // set breakpoint at address in MIPS .ra register.

BS @lr // set breakpoint at address in ARM .lr register.

BS my_label your_label // set two breakpoints

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 59

4 MAJIC Probe Debug Services
NOTES:

• The breakpoint commands are only available in MONICE. If you are using
another debugger, you must use the breakpoint services provided by that
debugger.

• Software breakpoints in Thumb or MIPS16 code are not supported by
MONICE.

The BS command allows a pass count to be specified as an optional parameter. It is
also possible to specify a MON command list to be executed when the breakpoint
is hit (and the pass count it met). Refer to Breakpoint Set on page 77 for full
information on these options.

BS 80005020, 20 {dv "\nat 80005020 20 more times\n"}
// set a breakpoint with pass count = 20.
// when it’s hit, display a message.

BS my_label { dv "\n executed my_label\n"; g}
// set breakpoint at my_label; when it’s hit,
// display message and restart execution.

BS my_label,-3 // set a temporary breakpoint at my_label with
// a pass count of 3.

Hardware
Breakpoints

Hardware breakpoints are implemented as logic within the processor's debug
support unit that monitors the processor's address and optionally data busses, and
stop program execution if a specific condition is met. The number and type of
hardware breakpoints you can set depends on the capabilities of the processor you
are using. The EDB user interface provides a superset of the possible hardware
breakpoint capabilities, but the MAJIC probe restricts their use to only those
features that are available in your processor. Refer to your processor’s
documentation for details on the instruction breakpoint features available to you.
MONICE does not directly support setting hardware breakpoints, although it does
support hardware breakpoints that the MAJIC probe had converted from software
breakpoints that were set in ROM (see Software Breakpoints on page 59).

Instruction Breakpoints An instruction-match breakpoint stops program execution when the PC reaches a
certain address. Many processors provide additional capabilities for qualifying
instruction breakpoints:

• Some processors provide an address mask capability to trigger a
breakpoint for a range of addresses, and some processors even support
arbitrary ranges by providing separate start and end addresses.

• Some processors provide PID or ASID qualification, triggering a
breakpoint only when the MMU’s PID or ASID field matches.

• Some processors can provide a TracePoint feature to generate an external
trigger instead of stopping program execution when the breakpoint is hit.
The MAJICPLUS probe can be set to assert its TRIG OUT output (on the
rear panel of the MAJIC probe) when a trace point is hit, or trigger trace
data acquisition. This is covered in Chapter 6, Tracing and Trace Points,
on page 141.

i

60 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
Data Breakpoints A data breakpoint stops program execution if a specified data transfer is initiated.
Most processors which offer data breakpoints provide a number of optional break
qualifications:

• Most processors can compare the data value as well as the address. Some
processors allow the data value to be masked.

• Usually the breakpoint can be restricted to reads, writes, or both reads and
writes, and can be restricted to certain byte lanes.

• Some processors provide an address mask capability to trigger a
breakpoint for a range of addresses, and some processors even support
arbitrary ranges by providing separate start and end addresses.

• Some processors provide PID or ASID qualification, triggering a
breakpoint only when the MMU’s PID or ASID field matches.

• Some processors can provide a TracePoint feature to generate an external
trigger instead of stopping program execution when the breakpoint is hit.
The MAJICPLUS probe can be set to assert its TRIG OUT output (on the
rear panel of the MAJIC probe) when a trace point is hit, or trigger trace
data acquisition. This is covered in Chapter 6, Tracing and Trace Points,
on page 141.

EPI OS and
Semi-Hosting

The MAJIC probe can provide your application with access to the host computer’s
screen, keyboard, and file system. The underlying technique that is used depends
on the processor architecture, but the basic concept is that the program calls Host
Interface Functions (HIF) to pass information and control to the debugger, which
performs the service and returns results back to your program.

MIPS For processors conforming to the MIPS architecture, HIF support is implemented
in the epios.c module, in the samples directory. Most of the sample programs
provided in the EDTM software package are built using EPI’s compilation tools,
which use this module as the bottom layer of the run-time library. This makes it
possible to use standard run-time library functions such as printf() and gets()
to interact with the user, or functions such as fopen() and fread() to access the
computer’s file system.

When using compilation tools other than EPI’s, you may want to modify your
run-time library to work similarly, or you may call the functions in epios.c
directly. The public interface for this module is declared in epios.h. The ostest
sample program is an example of making direct HIF calls: _hif_init is called
from boot.s, and various other HIF calls are made from ostest.c.

NOTE: When making HIF calls directly from your source code, EPI recommends
using the macros defined in epios.h so that HIF support can be easily removed
from your production build by simply providing an alternate set of macros.

It is important to be aware that most HIF calls are intrusive, meaning that program
execution is paused when the HIF call is made, and resumed upon completion, so
that the results of the HIF call can be returned to the caller. This intrusion may
result in unacceptable latency in tight real-time applications. However, the “debug
print” channel provides the ability to display output through the debugger with

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 61

4 MAJIC Probe Debug Services
minimal, and in some cases no intrusion on the running program. For most
processors which support DMA via the EJTAG interface, the messages may be
transferred from the target to the MAJIC probe without interfering with processor
execution. For other processors, execution must be paused momentarily to transfer
the message, but remains stopped for several milliseconds instead of the tens or
even hundreds of milliseconds required for normal HIF calls.

NOTE: Since EPI-OS support introduces some intrusion on breakpoint processing,
it can be disabled with the Semi_Hosting_Enabled option (see page 163). By
turning this option off you can minimize the latency associated with breakpoint
pass counts.

ARM For processors conforming to the ARM architecture, HIF support is accessed via
the ARM Semi-Hosting Library. When using this feature, HIF calls are made by
trapping the software interrupt (SWI) vector. To use this feature, the
Semi_Hosting_Enabled option must be turned on. If your application uses the
SWI vector for something other than Semi-Hosting calls, then the
Semi_Hosting_Enabled option must be turned off.

NOTES:

• If Semi_Hosting_Enabled is on, the Vector_Catch bit corresponding
to the SWI (0x04) is ignored.

• The ARM Semi-Hosting library determines the top of target memory (for
setting up the heap) from the Top_Of_Memory option. This option should
be set to the first address beyond physical RAM on your target (for
example, Top_Of_Memory=0x80000 if RAM is from 0 to 0x7FFFF).

Starting Execution

Starting target execution involves restoring the state of the processor to exactly
what it was when execution stopped, then allowing the processor to resume its
normal instruction fetching and execution. Prior to starting execution, the MAJIC
probe flushes any data cache lines that may have become incoherent as the result of
memory transfers made by the MAJIC probe, and invalidates corresponding
instruction cache lines. Then it restores all of the processor registers to the values
they had when execution stopped. Finally, it returns execution control to the
application code.

Execution continues until one of several events occurs:

• A breakpoint is hit.

• You ask the debugger to stop.

• The TRIG IN Run Sync or Break event occurs (see Ice_Trigger_In on
page 162)

• Your program completes via an exit() call.

• You are using the EDTM sample boot.s module, and an unregistered
exception occurs.

• An exception is raised for which the Vector_Catch option is set (see
page 167).

i

i

62 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
The case of starting execution from an arbitrary location usually implies that a new
value is loaded into the program counter. While this is no problem for the MAJIC
probe, it may be for the user. It is the user’s responsibility to ensure that the state of
the system, including internal registers, external memory, and stack is initialized
correctly for that particular starting point.

Source-level debuggers typically provide buttons and hot keys for starting and
stopping the program.

NOTE: When starting execution from a breakpoint, the MAJIC probe must single
step off of the breakpoint before actually starting execution.

Concurrent Debug
Mode

While executing in concurrent debug mode, the debugger’s user interface and
command line remain active. To whatever extent possible, the MAJIC probe
provides debug services without intruding on program execution. For example,
MIPS processors that support DMA via the EJTAG port can support peeking and
poking memory (including variables) without stopping the processor.

Some debug services require that the processor be paused, for example accessing
the processor’s register file, and in many cases memory as well. As required, the
MAJIC probe pauses program execution to perform the service and then restarts
execution. This happens behind the scenes, so it looks as if program execution
remained running the whole time. However, in tight real-time systems the intrusion
may be disruptive, in which case you should avoid using such debug services while
running in concurrent debug mode.

Examples:

G // Go from current PC
G =reboot // Go, starting from reboot
G main // Go until main is reached, or a breakpoint is hit
GI // Go-Interactive; start in concurrent debug mode

Real Monitor The ARM RealMonitor allows real-time applications to be debugged without
stopping the target processor. This is different from ordinary JTAG debugging,
where the target processor must be halted (put into DEBUG mode) before the
emulator can access memory or registers.

RealMonitor may be used to halt, set breakpoints, and step through foreground
code while interrupts continue to be serviced. Memory may be examined or
modified at any time while interrupts continue to be serviced.

RealMonitor requires RMTarget code (a debug kernel) to be running on the target.
This code can either be merged with the other embedded code running on the target
or it can implemented as a separate kernel (either downloaded through the MAJIC
probe or resident in ROM). The host debugger communicates with the RMTarget
code through the DCC (Debug Communication Channel). Please refer to the
RealMonitor documentation for details on using the RMTarget code (the
documentation, RMTarget_A.pdf, is installed with the RealMonitor package).

For information on configuring AXD for RealMonitor through RDIMAJIC see
Configuring AXD for RealMonitor through RDIMAJIC on page 29.

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 63

4 MAJIC Probe Debug Services
Downloading a RealMonitor Example Program

The RealMonitor must be running before you start AXD. If RealMonitor is
installed in your boot ROM, then all you need to do is power up normally.
Otherwise, you may download RealMonitor through the MAJIC probe using
MONICE, and then start AXD. Refer to Using the Setup Wizard on page 15 for
information on creating a MONICE shortcut for this process.

Running AXD

Once the RealMonitor code is running on the target (and after you have quit from
monice), you should be able to debug from AXD. When AXD connects to the
MAJIC probe, RDIMAJIC opens its own console window. With RealMonitor, it
takes several seconds for the connection to be fully established.

NOTE: If you exit with an error condition on the last time you ran AXD, you may
find that AXD does not attempt to connect to the MAJIC probe. In that case, go to
the Option menu and select Configure target to open the Choose Target dialog box.
The selected target will still be RealMonitor, so just click OK. This clears the error
condition and AXD should connect to the MAJIC probe. This might happen on the
first time after you try to use RealMonitor, because AXD probably had an error
when you first selected RealMonitor mode.

Starting Execution
with MONICE

The G (Go) command starts or resumes execution of the program from the current
PC (or from a new starting point), and the ^BREAK or ^C key stop execution.

The GI (Go-Interactive) command starts execution in Concurrent-Debug Mode
which allows debugger commands during program execution. The SP (Stop)
command stops in this mode, rather than ^BREAK or ^C.

Starting Execution
with EDBICE

To run or resume program execution, click the GO button or select Go from the
Exec menu. The Stop button stops program execution. The first time execution is
started or stepped after selecting the program to debug or doing a restart, the
program image is downloaded (see Downloading with EDBICE on page 53).

The GO button also continues execution after stopping. The Restart or Load
button is used to reset the processor and restart from the beginning of your
program.

The Edb_Go_Interactive_Mode option (described on page 161) controls
whether the GO button enables concurrent debug mode.

MON> l LEDS_uhal.axf // Load the example

MON> vl // Verify that it loaded correctly

MON> gi // Go-Interactive

MON> q y // Quit monice

i

64 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
Advanced Topics

Assigning Names

Symbolic names representing memory locations or registers may be entered,
displayed, or killed in MONICE with the EN, DN, and KN commands. Names are
automatically read from the debugger information of an executable file when it is
downloaded.

MIPS Examples:

en ram_base = 0:1 /* Create a name for the start of RAM */
en ram_bound = FFFFFF:1 /* Create a name for the end of RAM */
en HW_REG0 = 18000000:P /* Create a name for a hardware register’s

physical address */
dn ram* /* Display all names starting with RAM */

ARM Examples:

en flash_base = 20000000 /* Create a name for the start of flash */
en HW_REG0 = 30000000

dn flash* /* Display all names starting with flash */

Command Aliases

The EA (Enter Alias) command creates an alias (synonym) for a list of one or more
commands. It is normally used to create a short abbreviation (one or more
characters) for a longer command or sequence of commands that are frequently
needed.

Combining EA with FR C allows you to create your own custom commands. A
command file may accept parameters, generate output, and supports expression
evaluation and flow control for creating loops – everything you need to create your
own intelligent command (see Command (script) Files on page 67). The EA
command allows you to define a name to use for running your command.

Aliases can be displayed with the Display Alias (DA) command, and removed with
the Kill Alias (KA) command.

The DA (Display Alias) command shows the name and replacement text for one or
all currently defined aliases. If the command is entered without a parameter, all
aliases are displayed

The KA (Kill Alias) command deletes the name and replacement text for one or all
of the currently defined command aliases.

Examples:

ea DIA DW @pc L 10,i // Disassemble instructions from current pc

ea rc fr c // Read command file without echo
MAJIC User’s Manual 0380-0163-10 Rev 2.01 65

4 MAJIC Probe Debug Services
da DIA // Display DIA alias

da * // Display all aliases

ka rc // Kill rc alias

Debugger Local Variables

Debugger local variables provide temporary storage which does not impact the
target memory. Debugger local variables are referenced by a symbolic name that
starts with a dollar sign (for example: $temp_var). These local symbols can be
used anywhere a normal target address can be used. They are useful in command
files for holding expression results or loop counts and the like without intruding on
target memory or registers, as in the sample command file below:

NOTE: Memory is allocated for debugger local variables on an as-needed basis.
The first time a debugger local symbol name is used, the next available address in
the local address space is assigned, the name and address are added to the symbol
table, and its size is set. Once referenced, the debugger local symbol’s address and
size are fixed. Therefore, the first usage should allocate the maximum space
needed with an Enter command.

Example:

eb $buffer64 L 64 = 0 // Create and clear a 64-byte buffer

Formatted Display

The DV command (Display Value) allows the user to generate formatted output.
The format string controls the operation of DV much like the format string in a C
printf() statement. Many format controls match those used by printf, but
there are differences. Refer to the DV command definition on page 88 for full
details.

Examples:

DV "Hello, world!\n"
DV "Byte at %x is %02bx\n", global_char_var, global_char_var

ew $addr = 0xA0000000 /* Create and initialize $addr variable */

ew $write = 0x55555555 /* Create and initialize $write variable */

:LOOP

ew @$addr = @$write /* Dereference $addr and write $write
value there */

mw @$addr, $read /* Dereference $addr and move value to
$read variable */

if (@$read == @$write) {ew $write = ~@$write; goto LOOP}
/* Toggle and loop if value read matched written */

dv "ERROR: wrote %X to %X, read %X\n", @$write, @$addr, @$read
/* display error message */

i

66 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
The following might be useful as a command list in a BS command:

dv "Break at foo(), args = \"%s\", %d, %ld\n", r4, @r5, r6 ; g

NOTES:

• Integer formats assume that int is 32-bits.

• Even trivial uses of DV are not supported in Stand-alone (-z) mode. See
MONICE Command Line on page 169.

Saving a Session Log

An FW O (File Write Output) command causes each line printed to the console
(including the echo of commands entered) to be logged into the specified file. This
allows a permanent record to be made of a debugging session.

Examples:

FW O session.log // Open session.log and enable logging

FW O - // Stop logging and close file

FW O + // Re-open log file in append mode

Command (script) Files

An FW C (File Write, Command) command records only the commands that are
entered, but not the prompts and responses from the debugger. This is a convenient
way to create script files that can be used to automate repetitive command
sequences or to quickly recreate an interrupted debugging session.

The FR C (File Read, Command) command causes the debug monitor to read
commands from the specified file. When all the commands in the file have been
processed, the monitor resumes reading commands from its previous input source,
ultimately returning control back to the console. This is an easy way to input a
standard set of commands or to quickly recreate an earlier session. The file can be
created manually or can be logged with the File Write commands (FW C). If the
FR C command is part of a multi-command line, any commands following it on
the line will be executed after all commands in the new file have been executed.

NOTE: Empty lines in a command file are equivalent to hitting <Enter> at the
debugger prompt. That is, they may cause the previous command to be repeated if
it was a “repeatable” command such as Display or Step. A single space is sufficient
to inhibit this behavior, but a comment line is recommended instead.

Command
Parameters

Command files can accept and process parameters. Each parameter is an arbitrary
string of text delimited by white-space (blank or tab). When each line of the
command file is read in, it will be scanned for parameter strings of the form $$* or
$$n, where n is a one- or two-digit decimal number.

$$n Parameter to be replaced with the nth parameter of the FR C
command.

i

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 67

4 MAJIC Probe Debug Services
$$0 Special parameter which evaluates to the number of parameters
remaining to be processed.

$$* Special parameter which evaluates to all parameters supplied via
the FR C command.

NOTE: If no argument was supplied for a particular $$n parameter, the parameter
will simply be removed from the command line during parameter substitution.

The replacement text can be “pasted” into a larger token by using “\” as a
delimiter character.

Examples:

FR C example A B C // Invocation of command file including following
// examples.

$$1\3 // Replaced with A3

MY\$$2\IDENT // Replaced with MYBIDENT

temp\$$3 // Replaced with tempC

Shift/Unshift
Commands

The SHIFT and UNSHIFT commands change the correspondence between the
arguments supplied on an “FR C filename” command and the parameter strings
within the command file.

Normally, the first argument is substituted for $$1, the second argument for $$2,
and so forth. The SHIFT command increments the argument number that
corresponds to each parameter number, and decrements $$0, effectively shifting
the argument array so that a given range of parameter numbers refer to a higher
range of arguments. The UNSHIFT command reverses this effect.

Argument shifting is very useful when you want to perform the same series of
actions repetitively on an unknown number of arguments (or groups of arguments).
The following command file will display the contents of a series of ranges. It
expects an argument list of the form: addr count[addr count]... On the
first iteration, it processes the first two parameters; on the second pass, the next
two; etc.

:loop

if ($$0 < 2) { dv "Expected address and count\n";
 goto done }

dw $$1 L $$2

shift 2

if ($$0 >= 2) { goto loop }

:done

GOTO Command The GOTO command is used to change the order of command execution when
reading commands from a command file. It causes the command file reader to
jump to the line following the specified label. Labels are defined in the command
file by a line of the form:

:label

i

68 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Debug Services 4
where label is any valid identifier string (letters, numbers, $, or _). The colon
does not have to be in the first column of the line, but there must be no white space
between the colon and the label.

GOTO commands may precede or follow the corresponding label definition. Label
definitions and GOTO commands have no effect when reading commands from the
console, but they will be saved in a command output file if command logging is in
effect.

The GOTO command, in combination with debugger local variables and the IF
command, can be used to construct arbitrary conditional blocks and loops in
command files.

Example:

If Command The IF command supports conditional execution of debug monitor commands.
This is extremely useful in breakpoint command lists, where the Go command can
be used to automatically continue execution if some condition is not met. It is also
useful in command files, where the GOTO command can be used to conditionally
alter the flow of control.

Example:

The example uses a combination of breakpoint pass counts, the IF command, and
a debugger local variable to implement a breakpoint that will display a message
every ten times it is reached, but will not actually stop executing the program until
the breakpoint has been reached 100 times.

EW $loop = 0 /* Initialize debugger variable */

:TOP

S 1000 ; DW x /* Look at variable every so often*/

IF (@.4x > 0xffff) { GOTO BOOM } /* Has it been trashed yet? */

EW $loop = @$loop + 1 /* Update loop count */

IF (@.4$loop < 1000){ GOTO TOP}/* Loop, but don’t go forever */

GOTO DONE /* Is working, exit cmd file */

:BOOM /* “x” got trashed */

DW $loop /* Loop count when we noticed
 trash */

DW x

:DONE

ew $count = 0

bs foo,10 {dv "entered foo 10 times\n"; if (@.4$count < 10) {ew $count = @.4$count + 1; g} }
MAJIC User’s Manual 0380-0163-10 Rev 2.01 69

4 MAJIC Probe Debug Services
+/-Q Enable or disable Quiet mode of command file playback. Normally, debugger
prompts and commands read from the command file are displayed just as they
would be if the commands were entered from the keyboard. But when Quiet mode
is active, the debugger does not display prompts and commands while reading
commands from a file.

Quiet mode is automatically turned on while a command alias is being executed.
When the alias command is finished, the original state of Quiet mode is restored.
This allows alias names that invoke command files to look like built-in commands,
because there is no extraneous output beyond what the command file explicitly
produces.
70 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC User’s Manual 0380-0163-10 Rev 2.01
5
MON Command Language
This chapter provides full details on the MON Command Language. MON is a
powerful command line and scripting language for accessing and exercising the
processor and target system. The way the MON Command Language is presented
and the extent of MON support depends on the debug environment, as follows:

MONICE: Commands are entered at the MON command prompt.

EDBICE: Commands are entered in the Session window in MON mode.
The Memory window’s M button selects between accepting
addresses as C expressions or addresses in MON syntax.

MDI: The MDI specification requires the debugger to provide a way to
pass commands through to the MDI library, but does not specify
how. Check your debugger documentation.

Others: Via the MON console window.

The Debug Monitor produces a summary of MON commands in response to the
help command h. Also, a summary of these commands is listed in Appendi xC,
MON Quick Reference, on page 169.

This chapter is organized in the following sections:

• MON Command Basics

• Debug Monitor Commands on page 72

• Debug Monitor Operands on page 124

MON Command Basics
In learning the MON command language, it may help to know some of the design
philosophy that it is based on. Commands are usually formed from the first letter
of each word in the spoken command name. Command names are of the form
Action, Action Object, or Object Action (e.g. Go, Display Word, or File Read).

Command names were chosen that are easy to remember, and the command
mnemonics are simple abbreviations. The number of basic commands are kept to a
minimum — there is just one Display command, for instance, not “Dump
71

5 MON Command Language
memory” plus “eXamine registers” plus “Unassemble instructions”, etc. With the
exception of symbolic names, the fmt operand, and UNIX filenames, debugger
commands are not case sensitive.

MON Help MON features a hierarchical help system. The following types of commands are
available:

H // shows the list of commands.

H D // gives general help on display commands.

H DW // gives detailed help on the display word commands.

H addr // gives detailed help on arguments.

H ops // shows the list of command operands for which on-line help
// is available.

Command Lists You can enter multiple commands on a single line, separated by “;”. For example,
the following line will execute a MIPS program up to function foo, display its
three argument registers, then continue execution until foo returns to its caller.

G foo ; DW a0 L 3 ; G @ra

If an error is detected in a command, the rest of the command will be ignored but
subsequent commands on the same line are executed. The only constraint is when
using either the EA command or the OS escape command (!): in either case, the
command must be the last command on the line. When the EA command is
encountered, the remainder of the line is taken as the alias replacement text; and
when the OS escape command (!) is encountered, the rest of the line is taken to be
a command to the operating system, regardless of its contents.

Command lines can contain C-style comments (e.g. “/*This is a comment*/”)
and C++ comments (e.g. “//...”). Comments are replaced with a single blank when
the command is being interpreted. Comments are most useful for documenting
command files.

NOTE: Empty lines in a command file are equivalent to hitting <Enter> at the
debugger prompt. That is, they can cause the previous command to be repeated, if
it was a “repeatable” command such as Display or Step. Use comment lines instead
of blank lines to improve readability in command files without this side effect.

Debug Monitor Commands
The following pages describe the MON command language in detail. Each
command is listed at the top of a new page, along with its syntax, description, and
examples (where appropriate). Each command also indicates its availability in
various debuggers.

Command Availability All of the commands in this chapter are available in the MONICE debugger.
Subsets of these commands are also available in the optional EDBICE source-level
debugger, and in the backend libraries that allow the MAJIC probe to be used with

i

72 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
third party debuggers. For each command, the Availability heading lists one or
more of the following keywords for the environments where the command is valid:

MONICE The MONICE debugger.

EDBMON The MON mode in the EDBICE debugger.

EDB Both EDB and MON modes in the EDBICE debugger.

API The various debugger API libraries that third party
debuggers use to connect to the MAJIC probe (MDI.DLL,
RDIMAJIC.DLL, EPIWRBE.DLL).

ALL All of the above.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 73

5 MON Command Language
+B, -B Enable or Disable Breakpoints

Availability: MONICE

Syntax: �+�-�B �*�

�+�-�B addr ���

Description: The Enable Breakpoint (+B) or Disable Breakpoint (-B) command enables or
disables one or more software breakpoints previously set with the BS command.

* All software breakpoints are enabled or disabled.

addr Specifies the address of a software breakpoint to be enabled or
disabled.

addr must be an address in a valid code address space. The addr
syntax is shown in Address on page 125.

If no parameter is given, and there is a software breakpoint set at the current
execute location, that breakpoint is enabled or disabled.

Examples: BS main First Second Third

-B *

+B main Third
74 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
BC Breakpoint Clear

Availability: MONICE

Syntax: BC �*�

BC addr ����

Description: The Breakpoint Clear command clears one or more software breakpoints
previously set with the BS command. To temporarily disable a breakpoint, use the
-B command instead.

* ALL software breakpoints are cleared.

addr Specifies the address of a software breakpoint to be cleared.

addr must be an address in a valid code address space. The addr
syntax is shown in Address on page 125.

If no parameter is given and there is a software breakpoint set at the current
execute location, that breakpoint is cleared.

Examples: BC

BC *

BC my_sym
MAJIC User’s Manual 0380-0163-10 Rev 2.01 75

5 MON Command Language
BL Breakpoint List

Availability: MONICE

Syntax: BL

Description: The Breakpoint List command displays a list of all breakpoints currently set,
showing the break address, initial pass count, remaining pass count, whether or not
it is active (enabled), and the associated command list, if any. If a non-empty
command list is still active from a previous Go or Step command, it will also be
displayed.
76 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
BS Breakpoint Set

Availability: MONICE

Syntax: BS �addr�, �-�pass_count����� �{cmd_list}�

Description: The Breakpoint Set command sets or changes one or more software breakpoints
with optional pass counts and an optional command list. If the command is entered
without parameters, a breakpoint is set at the current PC.

There is no practical limit on the number of breakpoints which may be set at any
given time.

addr Specifies the address where execution will break. Note
that if addr is not specified, the software breakpoint will
be set at the current execute location.

- The minus sign indicates the software breakpoint is
temporary and will be removed when it is hit
pass_count number of times. A temporary breakpoint
is different from the non-sticky breaks that can be
specified with the Go command which all disappear when
the program stops for any reason.

pass_count Decimal number specifying the number of times the
breakpoint location must be reached before the breakpoint
is taken. At that time the command list is executed, and
the pass counter is reloaded. If no pass_count is given,
the breakpoint is taken every time the address is reached.

cmd_list Specifies one or more debugger commands to be executed
when program execution is stopped by this breakpoint.
Curly braces surrounding cmd_list are required. The
command list may contain a Go or Step command, in
which case the program will be resumed automatically. If
present, the Go or Step command must be last. Combining
IF and G commands in a breakpoint command list allows
complex conditional breakpoints to be created. If no
cmd_list is provided, execution simply stops.

Examples: BS // set breakpoint at current PC.

BS 400:r // set breakpoint 400 (hex) bytes above reset vector
BS my_label // set breakpoint at my_label
BS @RA // set breakpoint at address in register RA.
BS my_label your_label

BS my_label {dv "\n executed my_label\n"; g}

BS 5020:0, 20 {dv "\nat 80005020 20 more times\n"}

BS my_label,-3 your_label, 2

BS func1, -5 {dv "\n at func1 fifth time\n";
dw var; dw (@ptr):d; g }

NOTE: The last example, like all debugger commands, must be entered on one line.i
MAJIC User’s Manual 0380-0163-10 Rev 2.01 77

5 MON Command Language
C Calls

Availability: MONICE

Syntax: C �max_levels�

Description: The Calls command walks up the function call chain and displays the functions on
the chain.

This command shows how control got to its current location. It is also a convenient
way to find where to set a breakpoint to interrupt execution when a function returns
to its caller.

max_levels Decimal number specifying the maximum number of
stack levels to be displayed. The default is 15.

The debugger requires symbolic and debugging information to perform this
function. If the program file does not contain this information or code has not been
downloaded to the target via the debugger’s Load command, the operation of this
command is undefined.

For each function in the call chain, Calls displays the address of the next
instruction to be executed (both in hex and symbolically) and if the function has
arguments, the local registers containing those arguments are also displayed. Note:
if the function modified the contents of its local registers which contain the
arguments, the modified values are displayed.

This command assumes that the program under test follows MIPS or ARM calling
conventions. C programs will meet this requirement, but in assembly language
programs, adherence to the standard calling convention is the responsibility of the
programmer. For MIPS targets, the correct calling convention must be specified
with the Calling_Convention configuration option (see page 159).

For static (non-global) functions, the name of the function may not be known, in
which case the closest preceding global symbol will be displayed along with an
offset (assuming it’s within the range specified by the Sym_Delta configuration
option described on page 164).
78 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
CF, CFI, CI Cache Flush

Availability: MONICE, EDBMON, API

Syntax: CF �I�D�

CI �I�D�

CFI �I�D�

Description: The Cache commands are used to flush and/or invalidate the contents of the
instruction and/or data caches.

CF flushes (writes back to memory).

CI invalidates without updating memory.

CFI flushes and then invalidates.

If an I or a D operand is specified, only the instruction (I) or data (D) cache is
affected. If no operand is specified, both caches are affected.

NOTE: Support for Cache Flush (CF) and Cache Invalidate (CI) operations depends
on features that are not provided by all processors. If the specific processor you are
using does not support the operation, an error message is displayed.

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 79

5 MON Command Language
DA Display Alias

Availability: ALL

Syntax: DA

DA *

DA ident

Description: The Display Alias command shows the name and replacement text for one or all
currently defined aliases. If the command is entered without a parameter, all aliases
are displayed. Alias names are not case sensitive.

* Display all aliases. This is the default.

ident The name of a command alias defined with the EA
command. ident is not case sensitive.

See Enter Alias on page 89 for more information about creating command aliases.
See also Command Aliases on page 65.
80 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
DB, DD, DH,
DW

Display/Find Data

Availability: MONICE, EDBMON, API

Syntax: D�type�

D�type� range �, fmt�

D�type��R� range �, fmt��= value �# mask��, value �# mask��������

Description: This command displays the contents of the specified registers or memory locations
in a variety of formats, or searches a memory range for the specified value list.
Registers and “debugger local” address space may not be searched.

Once a Display/Find command has been entered, it may be repeated for successive
addresses simply by pressing the <enter> key, until some other command is
entered. The = value option causes successive <enter>s to repeat the search
from where the last match left off. If no more matches are found, a message
indicating that fact is displayed.

type �B�H�W�D�
specifies the object size, where B is for Byte, H is for Half-word, W
is for Word, and D is for Double word. The default is the type
specified in the previous Display command or W, if this is the first
Display command.

R the Reverse option causes the searching to start at the end of the
range and scan backwards. (Note that type is then required if the
DR “display registers” alias is active.)

range may indicate the location and number of objects to display or
search. If range does not specify a start address, Display will
continue where the previous Display left off, or begin at virtual
address 0 if it is the first Display command.See Address Range on
page 134.

fmt �d�u�o�x�X�f�e�E�g�G�c�s�i�
the display and search value format; default is “X” (hex). For
more information and to see a list of valid formats for each type,
see Data Format on page 131.

value is the data to match against and must be given in fmt type. For
integer fmt types, value may be an expr. If fmt is “s”, value is
a string literal (string syntax is shown in String Literal on
page 140.). If fmt is “i”, the mini-assembler is invoked (see Enter
Data on page 90).

mask is a hex value that specifies which bits of value should be
compared with memory. If mask is supplied only for the last value
in the list, it will apply to all values in the list.

Examples: DW R0 R31 // Display the general registers.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 81

5 MON Command Language
DB @my_str_ptr,s // Display null-terminated string pointed
// to by my_str_ptr.

DW 2000:0 l 100,i = lui r0,0 #fc000000
// Find first LUI instruction in range.
// (Press <enter> to find successive LUIs)

DB _fdata _edata,s = “ERROR” #DF
// Search the data section for “ERROR”, case
// insensitive
82 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
DF Display Filters

Availability: ALL

Syntax: DF �*�filter_list�

Description: The Display Filters command displays the trace display filters, and indicates their
enabled/disabled status.

* Means all filters. This is the default.

filter_list Has the form: �Fid�:id�� ���

id Has the form: �1��50�label�

label Has the form: $ident, where ident contains no more
than 15 characters and is not case sensitive.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 83

5 MON Command Language
DI Display Information

Availability: ALL

Syntax: DI

Description: The Display Information command shows the version number and configuration
information for the Debug Monitor and the target. This is a duplicate of the
information normally displayed when the debugger is first invoked.
84 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
DN Display Names

Availability: MONICE, API

Syntax: DN��*�ident�ident*�

Description: The Display Names command displays the values (addresses) of symbols known
to the debugger.

* Displays all names. This is the default. ‘*’ is a wildcard
character and can be given alone or at the end of sym.

ident Is a global datum, function, or user-defined symbol name
(with EN). ident is case sensitive. When used with ‘*’,
ident can be the starting characters of one or more global
data, functions, or user-defined symbols.

See also Assigning Names on page 65.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 85

5 MON Command Language
DO, DOV Display Options

Availability: ALL

Syntax: DO�V� �*�pattern*�cfg_option�

Description: The Display Options (DO) command displays a table of specified configuration
options with a brief description. If the command is entered without parameters, all
options are displayed. The Display Options Verbosely (DOV) command fully
describes the option or options; it is best used with a particular option.

* Displays all options. This is the default. ‘*’ is a wildcard
character and can be given alone or at the end of
pattern.

pattern ident
Displays all configuration options where the first letters
match ident.

cfg_option Displays a specific option. The various options available
are described under Appendix B, Configuration Options,
on page 159.

To modify configuration options, see the Enter Option on page 95.
86 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
DT Display Trace

Availability: ALL

Syntax: DT ?

DT ���+�-��count���td_range��, �R�I�D�M� �A�R�D�N���

Description: The Display Trace command allows the user to request a list of the available
frames and the current pointer, to display frames relative to the current pointer or
to display specific frames by number. Once a Display Trace command has been
entered, hitting the <Enter> key will display the next full screen of frames in the
current direction, until some other command is entered. The display mode remains
in effect until changed.

? Means report available frames and the current pointer

�+�-��count� Sets the default paging direction and displays the next
screen of frames, or one starting count displayable
frames away.

td_range Has the form: �start �end�����start� L count�
where start and end are decimal numbers or $, and
count is a decimal number.

�R�I�D�M � Sets the display mode: Raw�Instruction�Data��
Mixed

�A�R�D�N�� Sets the timestamp display mode: Absolute �
Relative (to first frame)�Delta (between frames)�
None

The default is Relative for Raw mode, None for the
rest.

• Specifying start and end displays frames start
to end, inclusively.

• Specifying start L count displays count
frames forward from start.

• Specifying L count displays count frames in the
current paging direction.

• Specifying ‘$’ for start or end means last
frame.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 87

5 MON Command Language
DV Display Values

Availability: MONICE, EDBMON, API

Syntax: DV string�, expr�����

Description: The Display Value command allows the user to generate formatted output. The
format string controls the operation of DV much like the format string in a C
printf() statement.

string a string literal containing characters to be displayed and
conversion specifiers. For each conversion format
specification, a corresponding expr argument is required
to provide the value to be displayed. (The string syntax
is shown in String Literal on page 140.)

All the conversion specifiers defined for the “C” printf()
function are supported, except the use of * to specify
dynamic field width or precision. Also, as an extension,
the conversion letter may be preceded by an object size
specifier: B, H, or W (or L) indicating that the value to be
displayed is a Byte, Half-word, or Word sized object
located at address expr.

The size and conversion letters combine to determine
whether to display the value of expr or the data stored at
the address expr. For formats s, e, f, and g, the data at
the address expr is always displayed. For all other
formats, the value of expr is displayed, unless a size
specifier is used (in which case the data at expr is
displayed).

See also Debugger Local Variables on page 66 and Formatted Display on page 66.

Examples: DV "Hello, world!\n" // Note that even trivial uses of DV are not
// supported in Stand-alone (-z) mode.

DV "Byte at %x is %02bx\n", global_char_var,
global_char_var

// the following might be useful as a cmd_list in a BS command.

dv "In printf, args = \"%s\", %d, %ld\n",
@r4, @r5, r6 ; g
88 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
EA Enter Alias

Availability: ALL

Syntax: EA ident cmd_list

Description: This command creates an alias (synonym) for a list of one or more commands. The
alias can then be used as a command name. EA is normally used to create a short
abbreviation (one or more characters) for a longer command or sequence of
commands that are frequently needed.

ident the name of the alias that is being created or re-defined.
When ident is used as an alias name, ident is not case
sensitive. (See Identifier on page 132.)

cmd_list command�;command����
one or more debugger commands, separated by
semicolons. If the last command in cmd_list is not
complete (missing some parameters at the end) they must
be provided when the alias is used.

When a command is being processed, the debugger first checks to see if the
command name matches an existing alias name, ignoring alphabetic case. If a
match is found, the alias name is replaced by the text of cmd_list, and the
command is re-scanned. If a match is not found, the debugger checks for built-in
commands. This means that aliases can be used to re-define existing built-in
commands, and the alias replacement text can contain other alias names. Recursive
alias references are not supported, however.

If cmd_list includes a “FR C file” command, the command file will be read in
Quiet mode to provide the illusion that the alias name is a built-in command.

Aliases can be displayed with the Display Alias command, and removed with the
Kill Alias command.

See also Command Aliases on page 65.

Examples: EA DIA DW @pc l 10,i // Disassemble instructions from current pc

ea rc fr c // Read command file without echo
MAJIC User’s Manual 0380-0163-10 Rev 2.01 89

5 MON Command Language
EB, ED, EH,
EW

Enter Data

Availability: MONICE, EDBMON, API

Syntax: E�type��K� �range��,fmt�

E�type� �range��,fmt� = value�, value�����

Description: The Enter Data command allows the contents of the specified registers or memory
locations to be altered. If a value list is not given, the Enter command displays the
current value of each object in turn, prompting for a new value. If range is not
supplied, the Enter command picks up where the last Enter command left off.
Enter with i fmt invokes a mini-assembler.

If a value list is given, the Enter command will store the values immediately
without reading the old values (i.e. there will be no interactive prompting). If the
number of values supplied would overflow the specified range, the excess values
are ignored. If the supplied values do not completely fill the range, the value list
will be replicated as necessary to fill the range.

Note: Such replicating “fill” operations are implemented as an Enter followed by a
“destructive” overlapping Move. When the entire range is read/write memory, the
effect is as expected. But the results may be non-intuitive if write-only or read-only
resources are involved (e.g. ew r0 r31=123 will have the effect of filling the
registers with 00000000).

type Specifies the object size. Has the form: �B�H�W�D�.�
where B is for Byte, H is for Half-word, W is for Word, and
D is for Double word. The default is the type specified in
the previous Enter command or W, if this is the first Enter
command.

K Causes input to be read directly from the keyboard, even
when reading commands from a command file. It is
ignored if “= value” is given. If K is not specified and an
Enter command without a value list is executed from a
command file, the input data items are also read from the
command file.

range Specifies the location(s) where the values will be stored.
The syntax of range is described in Address Range on
page 134.

If range does not specify a start address, Enter continues
where the previous Enter left off, or begins at virtual
address 0 if it is the first Enter command. If range
includes a length or end address, an interactive Enter
command will automatically terminate after the last value
is entered. If range does not specify a number of objects,
the default range is determined by the number of values
supplied. And if no values are supplied, the default range
is unlimited.

i

90 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
fmt Specifies the display and data entry format. Has the form:
�d�u�o�x�X�f�e�E�g�G�c�s �i�
The default format is X (hex). The i (instruction) format is
supported only for MIPS processors, and invokes the
mini-assembler (see MIPS Mini Assembler on page 47 for
details). For more information and to see a list of valid
formats for each type, see Data Format on page 131.

value Is the data to be written to the location(s) specified in
range and must be given in fmt type. For integer fmt
types, value may be an expr. If fmt is “s”, value is a
string literal. If fmt is “i”, value is an instruction.
For more information on fmt and expr, see Data Format
on page 131 and Expression on page 129, respectively.

If an explicit value list is not supplied, Enter displays the location and current
value of each object in turn, prompting for a new value interactively. Entering a
backslash “\” instead of a value will cause the Enter command to redisplay the
previous location and its current value for modification or verification. Hitting the
<enter> key by itself will skip over the current object without modification. A
period “.” instead of a value will terminate the interactive Enter command.

See also Debugger Local Variables on page 66.

Examples: MON> eb 0:1,c =a,,, ,b,,, ,c // the string “a, b, c”

MON> eb 0:1 l 10,d = 16,17,18 // fill with value pattern

MON> ew 1028:0,i = mfc0 a0,$12 // use mini-assembler

MON> dw 2000:1 l 6,i

a0002000: 08000803 j 0xa000200c

a0002004: 3c05bfc0 lui a1,0xbfc0

a0002008: 00a00008 jr a1

a000200c: 00000000 nop

a0002010: 010a0002 srl zero,t2,0

a0002014: 014a0002 srl zero,t2,0

MON> eb r2=55 // Sets R2 to 0x55.

MON> ew $saved=@loop // Saves the contents of the variable
// loop in the debugger local variable
// $saved.

MON> ew $saved=@$saved+1 // Increments the contents of the
// debugger local variable $saved.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 91

5 MON Command Language
EDB, MON EDB Command Mode and MON Command Mode

Availability: MONICE, EDBMON, EDB

Syntax: +�EDB�MON�

-�EDB�MON�

�EDB�MON�

Description: The EDB source-level debugger has its own command language interpreter. Some
MON commands are also supported in the EDB command language, but most are
available only by invoking the MON command interpreter within EDB. This is
called “Entering MON mode”. Manually switching between the EDB and MON
command interpreters is normally done by clicking the M button next to the
command entry area in the Session window. These commands allow command
files to switch modes as necessary, so they can be safely invoked from either mode
in EDB or from MONICE.

The +EDB and +MON commands save the current command mode and enable EDB
and MON mode, respectively. The -EDB and -MON commands restore the saved
command mode. Any command file to be used in EDB should start with a +MON or
+EDB command and end with the corresponding -EDB and -MON command. If the
command file includes both EDB and MON commands, each group of commands
should be bracketed by the appropriate enable/disable commands.

The EDB and MON commands switch to the specified command mode and cancel
the effect of all +EDB and +MON commands currently in effect. These commands
would be used in a command file only when it is intended to leave the
corresponding command interpreter active rather than restoring the original state.

Notes:

• The -MON command is meaningless when in EDB mode and will be
ignored in that case. Similarly, -EDB is ignored in MON mode.

• When “EDB mode” is activated via EDB or +EDB in MONICE or a back
end, the command interpreter will ignore all but the mode changing
commands until “MON mode” is restored via -EDB, +MON, or MON. This
allows EDB-specific commands to be included in command files being
read by debuggers other than EDB.

i

92 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
EF Enter Filter

Availability: ALL

Syntax: EF�id�� �$ident�� filter_clause �& filter_clause�����

Description: The Enter Filter command allows the user to define Trace Display filters. A filter is
a set of clauses that define states, values or ranges of values for one or more Trace
Names. Multiple filters may be active at the same time. When filtering is enabled,
only those frames which satisfy all of the clauses of any active filter will be
displayed. This can be very useful in finding a particular frame of interest in the
trace buffer. Once the frame is located, filtering can be disabled (using -F) or
modified to allow the surrounding frames to be seen.

id Has the form: �1��50�

ident Optional filter name, up to 15 characters. ident is not
case sensitive.

filter_clause Specifies the name of a trace datum and the value(s) it
should have to match the filter. It has the form:

where:
bit_name is the name of a single bit trace signal or a
specified bit of a multi-bit trace signal (such as EXCEPT or
U3).
Field_name is the name of a multi-bit trace signal taken
as a whole (such as U).
location and value are the address and instruction or
data values synthesized by the trace disassembly logic.

 For a list of trace signal names, see MAJICPLUS Probe
Trace Inputs on page 145, or use the DTN * command to
display the list.

mask A hex number specifying the bits of the value that should
be tested for a match with range.

Note: If a numeric id is not specified, the next available filter number will be
assigned.

�!�bit_name

�!�field_name = value

�!��location�value�= range # mask

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 93

5 MON Command Language
EN Enter Names

Availability: MONICE, API

Syntax: EN ident = addr

Description: The Enter Name command is used to create user-defined names within the
debugger. The name is entered in the debugger’s internal symbol table with the
specified address as its value. The name can then be used in place of the address in
all debugger commands.

ident The symbol name to be created. ident is case
sensitive.

addr The address to associate with the symbol name.
See Address on page 125.

See also Assigning Names on page 65.

Examples: EN uart_ctl = 81000000 // name for memory-mapped register

EN uart_data = 81000004 // name for memory-mapped register
94 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
EO Enter Option

Availability: ALL

Syntax: EO cfg_option = value

Description: The Enter Option command provides a mechanism to configure the operation of
the debugger and emulator. The various configuration options available and their
valid values are described in Appendix B, Configuration Options, on page 159.

cfg_option The long or short name of a valid debugger configuration
option.

value Depends on the specific option.

Examples: eo dp_color = on

eo dco=green
MAJIC User’s Manual 0380-0163-10 Rev 2.01 95

5 MON Command Language
ETM Enter Trace Mode

Availability: ALL

Syntax: ETM �R�I�D�M�

Description: The Enter Trace Mode command is used to specify the default format for the
Display Trace command and EDB’s Trace Data window. If can be used to specify
an initial default mode without causing trace data to be uploaded and processed.

R Specifies Raw format (all frames are displayed).

I Specifies Instruction format (only valid instruction frames
are displayed).

D Specifies Data format (only data access frames are
displayed).

M Specifies Mixed format (both instruction frames and data
access frames are displayed).
96 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
+F, -F Enable or Disable Trace Display Filter

Availability: ALL

Syntax: �+F�-F���*�filter_list�

Description: This command enables or disables trace display filters previously created with the
EF command, described in Enter Filter on page 93.

* Enables or disables all filters. This is the default.

filter_list Has the form: �Fid�:id�� ���

id Has the form: �1��50�label�

label Has the form: $ident, where ident contains no more
than 15 characters and is not case sensitive.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 97

5 MON Command Language
FR File Read

Availability: ALL

Syntax: FR C file_name �p_value ����

FR M file_name �addr�

FR �RD�TD� file_name

Description: This command is used to open a file for reading. The type of file is specified by the
first operand.

M Reads a memory image file (binary or Motorola s-record
file). The default filename extension is .mem.

RD Reads user-defined register names from a Register
Definition File. See Register Definition File on page 23
for details. The default filename extension is .rd.

TD Reads a Trace Display file. The default filename
extension is .td.

file_name Is the name of the file to be read. If file_name does not
include an extension, the debugger will supply the default
file name extension. If no extension is desired,
file_name should end with a “.”, which will be
removed before opening the file. The debugger searches
for file_name using the algorithm as described in File
Search Order on page 22.

addr The starting address where the memory image will be
loaded. It is not necessary that this address match the
starting address used to write the file. addr is optional on
memory image files containing Motorola S-Records. If
given, addr specifies an offset relative to the addresses in
the S-Record file.

C Reads commands from the specified file. The default
filename extension is .cmd. For details on how to create
and use command files see Command (script) Files on
page 67.

NOTE: Command files can contain FR C commands
which execute other command files. Command file reads
may be nested up to 20 levels deep.

p_value An argument to be passed to the Command file.
Each p_value is an arbitrary string of text delimited by
white-space (blank or tab).

i

98 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
FW File Write

Availability: ALL

Syntax: FW�O� TD filename

FW�A�O� M filename range

FW�A�O� �C�O� �filename�+�-�

Description: The File Write command allows the user to write a file. The type of file is specified
by the first parameter. The valid types for a File Write are described below.

TD Specifies a Trace Display file. The default filename
extension is .td.

M Specifies a memory image file (binary or Motorola
S-record file). The default filename extension is .mem.

C Specifies a command log file. The default filename
extension is .cmd.

O Specifies an output capture log file. The default filename
extension is .out.

�A�O� Normally, if the file specified exists, you will be prompted
for permission to overwrite or (for command and output
files) append to it. To avoid that prompt, use the FWA
command to append without prompt or the FWO command
to overwrite without prompt.

filename Is the path and filename of the file to be written, relative
to the current working directory. If filename does not
include an extension, the debugger will supply the default
file name extension. If no extension is desired, filename
should end with a “.”, which will be removed before
opening the file.

range Specifies the region of memory (or block of registers) to
be written to the memory image file. See Address Range
on page 134.

�+�-� Once writing to a Command or Output file has been
initiated, output may be temporarily suspended with “-”
and later resumed with “+”.

Doing a File Write to the O (Output) file type causes each line printed to the
console (including the echo of commands entered) to be logged into the specified
file. This allows a permanent record to be made of a debugging session. Whereas
using the C (Command) file type records only the commands entered, but not the
prompts and responses from the debugger. This is a convenient way to create script
files that can be used to automate repetitive command sequences or to quickly
recreate an interrupted debugging session.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 99

5 MON Command Language
Memory image files contain raw binary data “uploaded” from the target. They
normally represent the contents of some range of memory at the time they were
created, but they can also contain a dump of the processor’s register contents. The
file contains no control information (such as the original address range written to
the file), so a Memory file can be written from one location and later read back into
a different location.

See also Saving a Session Log on page 67 and Command (script) Files on page 67.
100 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
G Go

Availability: MONICE

Syntax: G�I� �=addr� �addr ���� �{�cmd_list�}�

Description: The Go command starts or resumes execution of the program. Execution continues
until a breakpoint or the end of the program is encountered. The I option starts
execution in interactive mode. This mode allows a subset of debugger commands
to be used while the target is executing. The SP (Stop) command interrupts the
running program and returns MON to normal debug mode. Note that MON’s
interactive mode command prompt differs from the normal prompt (e.g. MON(r)
means the target is running).

=addr If specified, execution begins at the addr address.
Otherwise execution begins at the current Program
Counter location.

NOTE: Some programs require initialized data sections or
registers to be reloaded before the program may be
restarted from its entry point. In such cases, the Load
command (described on page 109) should be used rather
than G =addr.

addr��� Remaining addresses on the command line specify
temporary (non-sticky) breakpoints, which will disappear
when execution stops for any reason.

NOTE: Each addr must be a valid code address.

cmd_list If specified, the list of commands will be executed each
time execution stops for any reason. This type of
automatic command list is useful for displaying
interesting values every time execution stops. If execution
stops due to hitting a breakpoint that also has an
associated command list, the breakpoint’s command list is
executed first. A cmd_list may contain a Go or Step
command, in which case program execution will resume
automatically. Note that it is legal for additional
commands to follow a Go or Step command in a
command list. They will be stacked for execution in the
proper order when execution finally stops for the last
time, but this can be confusing. It’s recommended that this
situation be avoided by making sure that a Go or Step is
the last command to be executed in the list.

Remember, curly braces surrounding cmd_list are
required and the entire Go command must be entered
without any intervening carriage returns. The current “end
execution” cmd_list can be displayed with the BL
command. It remains in effect until canceled by a Go or
Step command with a new or empty command list (i.e.
G {}).

i

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 101

5 MON Command Language
GOTO GOTO

Availability: ALL

Syntax: :ident

GOTO ident

Description: The GOTO command is used to change the order of command execution when
reading commands from a command file. It causes the command file reader to
jump to the line following the specified label. Labels are defined in the command
file by a line of the form:

:ident

where ident is any valid identifier string. The colon does not have to be in the
first column of the line, but there must be no white space between the colon and the
label.

ident The name of the label being defined or referenced. ident
is not case sensitive.

GOTO commands may precede or follow the corresponding label definition. Label
definitions and GOTO commands have no effect when reading commands from
the console, but they will be saved in a command output file if command logging is
in effect.

The GOTO command, in combination with debugger local variables and the IF
command, can be used to construct arbitrary conditional blocks and loops in
command files.

See also GOTO Command on page 68.

Examples: ED $loop = 0 /* Initialize debugger variable */

:TOP

S 1000 ; DD x /* Look at variable every so often*/

IF (@x > 0xffff) {GOTO BOOM } /* Has it been trashed yet? */

ED $loop = @$loop + 1 /* Update loop count */

IF (@$loop < 1000) {GOTO TOP} /* Loop, but don't go forever */

GOTO DONE /* Is working, exit cmd file */

:BOOM /* “x” got trashed */

DW $loop /* Loop count when we noticed
 trash */

DW x

:DONE
102 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
H Help

Availability: MONICE, EDBMON, API

Syntax: H

H command

H OPS

H op_key

H CONTROL

Description: The Help command displays general or specific information about the debug
monitor commands and operands. If no parameter is supplied, a brief summary of
each command is displayed.

command The name of a debugger command. The syntax and description of
that command is displayed, along with basic information about its
operands. If H is entered without an operand, a summary display is
generated that briefly lists all commands.

OPS A summary of the debugger monitor operands is displayed
showing a list of operands for which help screens exist, along with
their op_keys.

op_key The syntax and description of the specified operand is displayed.

CONTROL A list of flow control features for command files is displayed.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 103

5 MON Command Language
IF IF

Availability: MONICE, EDBMON, API

Syntax: IF expr {then_cmds} �{else_cmds}�

Description: The IF command supports conditional execution of debug monitor commands.
This is extremely useful in breakpoint command lists, where the Go command can
be used to automatically continue execution if some condition is not met. It is also
useful in command files, where the GOTO command can be used to conditionally
alter the flow of control.

expr is an address expression. It is evaluated (remember that a symbol
evaluates to its address unless preceded by @) and if the resulting
value is non-zero, the commands in the then_cmds are executed.
If the value is zero and the else_cmds is specified, those
commands are executed.

then_cmds cmd_list

else_cmds cmd_list

NOTE: Curly braces must surround the cmd_list, and the entire
IF command must be entered on one line.

See also If Command on page 69.

Examples: ew $count = 0

bs foo,10 {dv "entered foo 10 times\n"; if (@count<10)
{ew $count = @$count + 1; g} }

The example uses a combination of breakpoint pass counts, the IF command, and
a debugger local variable to implement a breakpoint that will display a message
every ten times it is reached, but will not actually stop executing the program until
the breakpoint has been reached 100 times.

NOTE: The cmd_list is shown here as two lines because of paper width
limitations. But like all debugger commands, the entire BS command must be
entered on one line.

i

i

104 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
KA Kill Alias

Availability: ALL

Syntax: KA *

KA ident

Description: The Kill Alias command deletes the name and replacement text for one or all of the
currently defined command aliases. Command aliases are created with the Enter
Alias command. See Enter Alias on page 89 for more information.

* Remove all aliases.

ident The name of a specific alias to remove. ident is not case
sensitive.

See also Command Aliases on page 65.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 105

5 MON Command Language
KF Kill Filter

Availability: ALL

Syntax: KF �*�filter_list�

Description: This command deletes trace display filters previously created with the EF
command (described in Enter Filter on page 93).

* Deletes all filters. This is the default.

filter_list Has the form: �Fid�:id�� ���

id Has the form: �1��50�label�

label Has the form: $ident, where ident contains no more
than 15 characters and is not case sensitive.
106 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
KN Kill Names

Availability: MONICE, API

Syntax: KN �*�ident�ident*�

Description: The Kill Names command deletes one or more symbols from the debugger’s
symbol table.

* Kills all symbols. ‘*’ is a wildcard character and can be
given alone or at the end of ident. When used with
ident all matching names are deleted.

ident Is a global data, function, or user-defined (with EN)
symbol name. ident is case sensitive. When used with
‘*’, ident can be the starting characters of one or more
global data, functions, or user-defined symbols.

See also Assigning Names on page 65.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 107

5 MON Command Language
KT Kill Trace Data

Availability: ALL

Syntax: �KT�KTD���Y�

Description: The Kill Trace Data commands (KT and KTD) delete all execution trace data
captured by the MAJIC probe. Unless the Y operand is specified, KT and KTD
prompt for confirmation before deleting the data.

KT and KTD perform the same function. Both names are supported for
compatibility with older versions of the MON command language.
108 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
L Load

Availability: MONICE, API

Syntax: L ���-�N�O scn_types��filename���� ������

Description: The Load command downloads one or more executable files to target memory,
loads symbol information from the files into the debugger’s symbol table, and
prepares the program for execution. The -�N�O scn_types operands can be used
to specify the section types to load or execute from loading for subsequent files.

In addition to loading the program files and symbol tables, the Load command can
produce a number of other “side effects” controlled by several configuration
options (see Configuration Options on page 159). Specifically:

• If the Reset_At_Load option is on (the default), Load first performs a
Reset operation equivalent to the R command (see page 116).

• If the Load_Osboot option is on (default is off), Load automatically
loads the program file whose name is osboot.sys before the files
specified on the Load command itself.

• If the Load_Entry_Pc option is on (the default), after the load is
completed, the PC is set to the entry point address contained in the first
filename.

Each of the file names and their respective scn_types are remembered for future
Load commands until explicitly changed in a subsequent Load command.

So if there is no filename explicitly specified, the current program is reloaded. In
this case the symbol table is not normally reloaded, but you can use the -O option
to force a reload. If new files to be loaded are specified, the existing global symbol
table is purged and symbols are loaded from the new files by default.

scn_types A set of letters specifying section types to load (-O) or not
load (-NO):

t text (program code)

d data (initialized data)

b bss (uninitialized data)

l literals (read-only initialized data)

s symbols

filename specifies an executable file to be loaded according to the
current scn_types.

Examples: L // reload the current program (using the current options)

L -o db // reload only data and bss sections of current program
L -o ts myprog // load text and symbols of myprog
L myboot -no s myprog1 -o tdbls mymain

// load all sections and symbols of myboot, load all but
// symbols of myprog1, load all of mymain
MAJIC User’s Manual 0380-0163-10 Rev 2.01 109

5 MON Command Language
LN Load Names

Availability: MONICE, API

Syntax: LN�A�O� �filename�����

Description: The Load Names command reloads symbols for the current program, or loads
symbols from the specified files. The new symbols will replace any existing
symbols by default, or they can be added to the existing symbols.

LN, LNO Overwrite the existing symbol table.

LNA Add to the existing symbol table.

filename The name of an executable file whose symbols are to be
loaded.

See also the Load command on page 109.
110 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
MB, MD, MH,
MW

Move
Move Reverse

Availability: MONICE, EDBMON, API

Syntax: M�type� range, addr

MR�type� range, addr

Description: This command copies data in range to the destination beginning at addr.

The source data and destination address do not need to be in the same address
space. For example, registers can be dumped to or loaded from memory by the
Move command.

The data is normally copied forward from the starting addresses in the source and
destination ranges, one type-sized piece at a time, with the resultant predictable
destructive effect if a portion of the range implied by addr falls within range. If R
is specified, the command becomes Move Reverse and the data will be copied
backwards from the ending address in the source and destination ranges. In this
case an overlapping upward move will be non-destructive, while an overlapping
downward move will be destructive. Of course if the source and destination are in
different address spaces, a move can only be destructive if the two spaces overlap
in the same physical memory.

type Specifies the object size. Has the form: �B�H�W�D�.�where B is
for Byte, H is for Half-word, W is for Word, and D is for Double
word. The default is the type specified in the previous Move
command or W, if this is the first Move command.

range Specifies the address space plus starting and ending addresses of
the source data. See Address Range on page 134 for more details.

addr Specifies the address space plus the starting address of the
destination. The ending address is implied by the length of range.

Examples: mw a0 a3, t0 // move argument registers a0..a3 to t0..t3.

mw 3000:0 l 4, r1 // move four words to registers r1..r4.

mrb 1000:1 10fe:1,1001:1 // move up one byte non-destructively.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 111

5 MON Command Language
MC Memory Configuration

Availability: ALL

Syntax: MC �range�, mc_opt� ��� �

Description: The Memory Configuration command allows display and configuration of the
following properties of the target’s physical address space:

• Invalid address ranges.

• Address ranges where the MAJIC probe can use the faster DMA access
method to read/write values.

• Address ranges where partial word access is allowed.

See Memory Configuration on page 33 for more information.

Entered without any parameters, MC displays configuration information for the
entire addressing space. If range is given but not mc_opt, the configuration of the
specified address range is displayed. If an mc_opt is given, the setting is applied to
the specified address range.

range Specifies a range of physical memory to be displayed or where the
specified options apply. range must specify the physical address
space (:p).

mc_opt �JAM�DMA�INV�

�PWD�PWE�

JAM the MAJIC probe uses “instruction jamming” (executing Load/
Store instructions) to access target memory.

DMA When supported by the target processor, the MAJIC probe uses
DMA to access target memory.

INV the MAJIC probe never accesses the target memory.

PWD Partial word access is disabled, so the MAJIC probe reads/
modifies/writes full words when accessing the target memory.

PWE Partial word access is enabled, so the MAJIC probe accesses bytes
and half words in a single operation.
112 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
MT Memory Test

Availability: MONICE, EDBMON, API

Syntax: MT range �,mt_id��,�H�V�Q�S���������,repeat_cnt��

MT range,8,delay�,�H�V�Q�S���������,repeat_cnt��

MT range,mt_loop�,data� �,repeat_cnt�

Description: The Memory Test command initiates a test of the target’s memory system, or one
of three “scope loops”.

range Specifies memory space, starting and ending addresses to
be tested.

mt_id Is a decimal number specifying the test type. The default
is 9.

mt_loop Is a decimal number specifying a type of scope loop.

delay Is a decimal number specifying the delay time in
milliseconds, between writes and reads. It is required only
for test 8 (refresh test).

data Specifies that data and its one’s complement are
alternatively written. (Required if mt_loop = 11 or 12.)

H Halt-on-error: prompt to abort testing upon error.

V Verbose: constant updates on test in progress.

Q Quiet: pass completions are not reported individually.

S Silent: errors are not reported individually.

repeat_cnt Is a decimal number specifying the number of times to run
the test. Default is forever. Either mt_id, mt_loop, H, V,
Q, or S is required if repeat_cnt is to be specified.

1 Basic patterns

2 Walking 1’s and 0’s

3 Rotating address

4 Inverted rotating address

5 Partial word access

8 Refresh

9 Each of 1, 2, 3, 4, and 5 in turn.

10 read only

11 write only

12 write then read
MAJIC User’s Manual 0380-0163-10 Rev 2.01 113

5 MON Command Language
Q Quit

Availability: MONICE

Syntax: Q �Y�

Description: The Quit command terminates execution of the debug monitor and returns control
to the host operating system.

Normally you will be prompted for confirmation before the debugger actually
exits. If you would prefer not to be prompted, or if you want to issue the Quit
command from a command file, you can supply the “answer” in advance by
supplying the optional parameter “Y”.

If you wish, you can “permanently” remove the prompt by creating an alias for the
Quit command in the ustrtsys.cmd file: EA Q Q Y.
114 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
+Q, -Q Enable or Disable Quiet Mode

Availability: ALL

Syntax: �+Q�-Q�

Description: This command enables or disables Quiet mode of command file playback.
Normally, the debugger prompts and commands read from the command file are
displayed just as they would be if the commands were entered from the keyboard.
But when Quiet mode is active, the debugger does not display prompts and
commands while reading commands from a file.

NOTE: Quiet mode is automatically turned on while a command alias is being
executed. When the alias command is finished, the original state of Quiet mode is
restored.

See also +/-Q on page 70.

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 115

5 MON Command Language
R, RP, RT Reset

Availability: MONICE, EDBMON, API

Syntax: R

RP

RT

Description: The RP (Reset Processor) command resets only the processor.

The RT (Reset Target) command resets the whole target system.

The R (Reset) command performs either an RP or RT, depending on how the
Ice_Reset_Output option is set.

Certain CPU registers will be initialized as specified in the processor’s data sheet
for a reset operation, and the current execute location (PC) will be set back to the
address specified by the Reset_Address option.
116 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
SHIFT
UNSHIFT

Shift/Unshift

Availability: ALL

Syntax: SHIFT �number�

UNSHIFT �number�*�

Description: The SHIFT and UNSHIFT commands change the correspondence between the
arguments supplied on an “FR C filename” command and the formal parameter
tokens within the command file.

Normally, the first argument is substituted for $$1, the second argument for $$2,
and so forth. The SHIFT command increments the argument number that
corresponds to each parameter number, effectively shifting the argument array so
that a given range of parameter numbers refer to a higher range of arguments. The
UNSHIFT command reverses this effect. Argument shifting is very useful when
you want to perform the same series of actions repetitively on an unknown number
of argument (or groups of arguments).

number is the number of arguments to shift or unshift.

* is valid only for UNSHIFT, and it restores the arguments so that
$$1 again refers to the first argument.

See also Shift/Unshift Commands on page 68.

NOTE: The $$0 parameter is also affected by shifting: if there were originally 10
arguments, after a SHIFT 2 command $$0 will be replaced with 8. $$* is not
affected by shifting - it is always replaced with the entire argument list.

Examples: The following command file will display the contents of a series of ranges. It
expects an argument list of the form:

addr count �addr count�����
if ($$0 < 2) { dv "Expected address and count\n";

 goto done }

:loop

dw $$1 L $$2

shift 2

if ($$0 >= 2) { goto loop }

:done

NOTE: The first if command in the example, like all debugger commands,
must be entered on one line.

i

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 117

5 MON Command Language
S Step

Availability: MONICE

Syntax: S�F�O��Q�V� �=addr� �number� �{�cmd_list�}�

Description: This command executes number instructions (default is 1) starting at addr (default
is the current execute address), one at a time. Execution terminates after number
instructions, or when a breakpoint is encountered. If a command list is given, it is
executed every time execution or stepping stops. It remains in effect until canceled
by a Step or Go command with an empty command list (e.g. “S {}”).

A Step command may be repeated by hitting the <Enter> key, until some other
command is entered.

O Step Over (SO) allows the current instruction to fully
complete before returning control to the debugger prompt.
In this mode, both subroutines and exceptions are allowed
to finish before control is returned to the user.

F Step Forward (SF) steps into calls but over exceptions
(including interrupts).

V Verbose mode. When a step count is given, each
instruction will be displayed before it is executed. A side
effect of this is that breakpoints are not enabled.

Q Quiet mode. When a step count is given, nothing is
displayed until execution terminates, at which point the
next instruction to be executed is displayed.

Q/V If neither Q nor V are specified, the mode of the previous
Step command is retained, with Quiet mode as the initial
default.

=addr If specified, this is the address where stepping begins.
Otherwise stepping begins at the current Program Counter
location. Note: the address must be in a valid address
space for instructions. addr must be an address in a valid
code address space. See addr and expr in Address on
page 125 and Expression on page 129, respectively.

number The (decimal) number of instructions to be executed. If
not specified, one (1) instruction will be executed. In
Quiet mode, execution will terminate before number
instructions have been executed if a breakpoint is
encountered. number is decimal by default. See Number
on page 133 for more information.

cmd_list If specified, the list of commands will be executed each
time execution stops for any reason. This type of
automatic command list is useful for displaying
interesting values every time execution stops. If execution
stops due to hitting a breakpoint that also has an
associated command list, the breakpoint’s command list is
118 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
executed first. A cmd_list may contain a Go or Step
command, in which case program execution will resume
automatically. Note that it is legal for additional
commands to follow a Go or Step command in a
command list. They will be stacked for execution in the
proper order when execution finally stops for the last
time, but this can be confusing. It’s recommended that this
situation be avoided by making sure that a Go or Step is
the last command to be executed in the list.

Remember, curly braces surrounding cmd_list are
required and the entire Step command must be entered on
one line. The current “end execution” cmd_list can be
displayed with the BL command. It remains in effect until
canceled by a Go or Step command with a new or empty
command list (i.e. S {}).

A Step command may be repeated (except for the effect of =addr) until some
other command is entered, simply by hitting <Enter> at the MON> prompt.

Examples: s 100 {if (@global_var<100) {s 100}
{dv "clobbered global_var = %ld\n", @global_var} }

This examples executes the program, 100 instructions at a time, until the variable
global_var is detected to have an invalid value.

Note: This example, like all debugger commands, must be entered on one line.i
MAJIC User’s Manual 0380-0163-10 Rev 2.01 119

5 MON Command Language
SP Stop

Availability: MONICE, EDBMON, EDB

Syntax: SP

Description: The Stop command halts a currently executing program in interactive mode.
Interactive mode is normally entered via the go interactive (GI) command and
allows a subset of debugger commands to be used while the program is executing.
120 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
+TE, -TE Enable or Disable Trace Execution

Availability: ALL

Syntax: �+�-�TE

Description: When using a MAJICPLUS probe with a target processor that provides execution
trace data, the +TE command enables capturing the trace data whenever the
processor is executing. The -TE command disables trace capture. Execution
tracing is normally enabled by default, and there is seldom any reason to disable it.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 121

5 MON Command Language
VL Verify Load

Availability: MONICE, API

Syntax: VL ���-�N�O scn_types��filename���� ������

Description: The Verify Load command is used to verify that the program was downloaded
correctly.

The Verify Load command is used to verify a program load. When no arguments
are specified, all sections of all files previously downloaded are uploaded and
checked against the original executable files.

scn_types A set of letters specifying section types to verify (-O) or
not verify (-NO):

t text (program code)

d data (initialized data)

b bss (uninitialized data)

l literals (read-only initialized data)

filename If specified, the executable file filename is uploaded
from the target and verified against the original COFF file.
Otherwise, the previously loaded file(s) are verified. The
sections to verified are determined by scn_types.
122 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
! Execute Operating System Shell

Availability: MONICE

Syntax: !�os_command�

Description: The Execute Operating System Shell command allows the user to execute a host
operating system command without having to exit the debug monitor. Remember
that ! must be either last or alone in a cmd_list. Furthermore, attempts to insert
debug monitor comments within the os_command will result in them being sent to
and interpreted by the operating system with the rest of the os_command text.

os_command is any valid operating system command. If it is not
supplied, a command shell is started up allowing you to
execute any number of host commands, finally returning
to the debugger by executing the operating system’s
“exit” (MS-DOS, UNIX) command.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 123

5 MON Command Language
Debug Monitor Operands
This section describes the operands common to many of the commands in the
MON command language.

With the exception of the fmt operand, symbolic names, and UNIX filenames;
commands and operands are not case sensitive. Commands are usually formed
from the first letter of each word in the spoken command name. Command names
are of the form Action, Action Object, or Object Action (e.g. Go, Display Word, or
File Read). The commands were chosen to be easy to remember and the command
mnemonics are simple abbreviations. The number of basic commands are kept to a
minimum. There is one Display command, for instance.

A summary of all operands is listed in Debug Monitor Operands on page 175.
124 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
addr Address

Syntax: memory addresses:

�number �(expr)��:space�
sym_name

expr

register addresses:

�.�reg_name�.field�

debugger local addresses:

$ident

Description: This operand specifies the location of an object. An address consists of an offset
and a space. An offset is a 32 or 64 bit value giving the byte address of an object
relative to the start of an address space (virtual memory, physical memory, general
register, etc.).

There are three classifications of addresses: memory addresses, register addresses
and “debugger local” addresses. For a description of “debugger local” address
space, see Debugger Local Variables on page 66. The register addresses reference
the processor’s general and special registers, user-defined registers, and optionally
specific bit fields within registers.

The memory addresses reference data and instruction memory or memory mapped
devices. These addresses include virtual address segments, and physical (main)
memory. The MIPS architecture defines memory in terms of virtual address
segments (e.g. kseg0, kuseg) mapped into a common physical address space. The
debugger accesses data or instructions either by their physical address (:P) or by
their virtual address, which may be expressed as an offset from the start of an
address segment. (For more information, see the space operand in Address Space
Designator on page 138.)

number Specifies an offset in bytes from the start of a space. The
default base for number is hexadecimal. If an ambiguity
arises between a hex digit string, and a sym_name or
reg_name, the symbol always takes precedence. In such
cases, the hex digit string must be preceded by 0x.

expr Specifies both offset and a space. An expr must be
enclosed in parentheses to allow addition of an explicit
space designator. The offset will be aligned to a word
boundary for word objects, and to a half word boundary
for half word objects. The offset for double words is
rounded to either 32 or 64 bits depending on the processor
bus width.

space Specifies the memory address spaces. If a space is not
explicitly indicated, a virtual address is assumed. See
Address Space Designator on page 138.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 125

5 MON Command Language
This operand must be appropriate for the command being
invoked. For example, the Go and Step commands require
virtual address segments; physical addresses may not be
used.

sym_name An ident specifying the name of a global or static
variable, or function in the program being debugged, or a
name previously defined via EA (refer to Enter Names on
page 94).

reg_name An ident specifying the name of a processor register. In
general, MON recognizes the register names documented
in the processor’s data sheet, as well as any names read
from a Register Definition File. See Register Name on
page 135 for a list of the register names for your
processor.

field An ident specifying the name of a specific bit field
within a register that contains multiple fields. The
complete field breakdown is shown when such a register
is displayed, but the reg_name.field syntax allows a
single field to be easily displayed or modified.

ident An ident naming a debugger local variable. The name
will be defined and assigned an address the first time it is
referenced.

Sometimes an ident may match a valid symbol name and a register name, and
may even be a valid hexadecimal number as well. In such cases, it will be
interpreted as the symbol name by default, and will need to be prefixed with “.” to
be interpreted as the register name, or 0x to be interpreted as the hex number. For
example, a0 is a sym_name if it exists, while .a0 is always the MIPS reg_name,
and 0xa0 is always the number.

An addr that consists of a special register field name (such as SR.IEC) is a special
case. It can be used in Display and Enter commands, but it cannot appear in any
other context, and ranges of fields are not supported.

Examples: 1000 // Virtual address 0x1000.

1000:u // MIPS. Same as above: virtual address 0x1000.

0n1000 // Virtual address 1000 (decimal).

1000:0 // MIPS. Offset 0x1000 in kseg0 (virtual address
// 0x80001000 or FFFFFFFF80001000 depending on
// CPU type).

1000:p // Physical location 0x1000 (pointed to by virtual
// addresses 1000:1 and 1000:0).

@0x1234:1 // Location whose virtual address is fetched from
// offset 1234 in kseg1.

R16 // General Register $16. This register can also be
// referred to by its software name S0.

SR // The current processor Status Register.

sr.kuc // The current value of the Kernel/User mode bit.
126 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
pc // The current Program Counter (unless there is a
// symbol named “pc”). This is not an actual
// register, but the address of the next instruction to
// be executed.

.pc // Always refers to the Program Counter.

a2 // Register A2 (also can be referred to as .A2, R6,
// or .R6).

0xa2 // Virtual address 0xa2.

foo_bar // Location and space defined by symbol foo_bar.

(@.1ptr+5*4) // ptr is a symbol giving an offset and a space.
// This expr fetches the byte at that location and
// adds 20 (decimal) to it.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 127

5 MON Command Language
cmd_list Command List

Syntax: command �; command����

Description: This operand specifies one or more commands to be executed. The debugger
accepts command lists, as well as simple commands, in response to the main
prompt or when playing back a command file. In this case the commands are
executed immediately. Some commands also accept a cmd_list enclosed in
curly-braces as an operand (such as IF, BS, S, G).

A null cmd_list in response to a MON> prompt will result in the previously
entered command being repeated if it was a “repeatable” command such as
Display or Enter. Note that empty lines in a debugger Command File are
equivalent to hitting <enter> at the prompt.

command is any valid debugger command or alias. With the exception of the
fmt operand, symbolic names, and UNIX filenames; commands
and operands are not case sensitive.

The following commands MUST be either the last command or alone in a
cmd_list: EA, L -c, and !, and any interactive commands (such as “EW” with
no list of values).

Command lists (and individual commands themselves within reason) may contain
embedded comments as described under Command Lists on page 72.

Quiet mode (described under Enable or Disable Quiet Mode on page 115) is
automatically turned on while a command alias is being executed. When the alias
command is finished, the original state of Quiet mode is restored.

Examples: dw a2

dw var; g

fr c setup.cmd

s 100; dw pe; g

l -o s prog.elf;s 10; dw @loop_count l 10
128 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
expr Expression

Syntax: addr

(expr)

expr op expr

unary-op expr

Description: This operand describes the expressions constructed from addresses. Expressions
combine addresses using the operators listed below. Parenthesized sub-expressions
are allowed.

All arithmetic and comparisons are performed in unsigned 64-bit integer mode,
even if the operands appear signed. For instance, “-1” is treated as the unsigned
value “0xffffffffffffffff”. This also means that the right shift operation
always zero fills the high order bits.

The operators are listed below in order of decreasing precedence. Unless modified
by parentheses, the associativity of operators of the same precedence is
left-to-right except unary operators, which associate right-to-left.

Type information (int, float, pointer-to, etc.) is not available. All numeric operands
are assumed to be integers, all arithmetic is performed unsigned, and symbols
evaluate to their address.

Note: The indirection operator is “@”, rather than the normal C operator “*”. This
is to emphasize that MON does not have the data type information that the C
operator requires. “@” means “fetch the address at”, so a full word (or double word,

() Parenthesized sub-expressions

unary-op + - ~ ! @ Unary plus, unary minus, bit wise
complement, logical NOT, address at

@.�1�2�4�8� 1, 2, 4, or 8 byte value at (indirection)

op * / % Multiply, Divide, Modulo

+ - Add, Subtract

<< >> Left shift, Right shift

< <= > >= Relational

== != Equals, Not equals

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

&& Logical AND

|| Logical OR

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 129

5 MON Command Language
for 64-bit MIPS targets) will always be fetched. @.digit causes digit bytes (1,
2, 4, or 8) to be fetched from addr.

Any reference to a register designator or symbolic name is replaced by the address
of the object, not its contents. The first such reference in the expression will also
cause the register or symbol’s address space (e.g. “General Registers” or “kuseg”)
to become the address space associated with the whole expression. This may sound
strange, especially since most debuggers do not support the concept of address
spaces, but in most cases the results are what you would expect without thinking
about it.

Examples: main + 20 // Location 32 bytes after the symbol main.

@R2 // Location in memory whose virtual address is in R2/V0.

@PC // Location of the next instruction to be executed.
// Indirection through .PC is especially useful. The
// command “DW @PC L 10,i” will disassemble the 10
// instructions beginning with the next instruction to be
// executed.

@RA // After reaching a breakpoint set at the start of a function,
// G @RA could be used to continue execution until the
// function returns to the caller.

@ptr // Virtual address pointed to by the value at the location
// defined by the symbol ptr.

(@ptr+5*4) // ptr is a symbol that describes a location in some
// address space. This expr fetches the word at that
// location and adds 20 (decimal) to it.

(@ptr)|8 // Value at ptr or’ed with 8.
130 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
fmt Data Format

Syntax: �d�u�o�x�X�f�e�E�g�G�c�s�i�

Description: The fmt operand specifies the format used by the Display and Enter
commands, as follows:

d Signed decimal integer.

u Unsigned decimal integer.

o Unsigned octal integer.

x�X Unsigned hexadecimal integer. Default is “X”.

f Signed floating point value in decimal notation, with six decimal
places.

e�E Signed floating point value in scientific notation, with six decimal
places.

g�G Signed floating point value in either decimal or scientific notation,
whichever is more compact.

c Single ASCII character.

s Character string.

i Assembled/disassembled instruction (see Enter Data on page 90).

The case of the x, e, and g formats determines whether alphabetic characters in
the formatted data will be in upper or lower case. The fmt operand is the sole
exception to the rule that keywords are not case-sensitive in monitor commands.

Some formats are not valid for some object sizes. Refer to the table below for valid
combinations.

See Display/Find Data on page 81 and Enter Data on page 90 for examples.

Type Valid Formats:

for Enter for Display

B d, u, o, x, X, c, s d, u, o, x, X, c, s

H d, u, o, x, X d, u, o, x, X

W any except c or s any except c or s

D f, e, E, g, G, x, X f, e, E, g, G, x, X
MAJIC User’s Manual 0380-0163-10 Rev 2.01 131

5 MON Command Language
ident Identifier

Syntax: �A��Z�a��z�_ ��A��Z�a��z�0��9�$�_ �. �����

Description: ident specifies the name of an entity known to the debugger. The type of entity
depends on the context. It can be a symbol, register, command file label, debugger
local variable, command alias, or trace filter.

NOTE: ident is case sensitive only for symbol names and debugger local variable
names. For all other uses, ident is not case sensitive.

i

132 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
number Number

Syntax: �0x�0n�0o� digit_string

Description: The number operand is used in address expressions and to specify counts in
commands.

Ox Specifies that digit_string is hexadecimal (base 16),
regardless of the context.

On Specifies that digit_string is decimal, regardless of
the context.

Oo Specifies that digit_string is octal (base 8), regardless
of the context.

digit_string A series of digits in the specified radix, or the default
radix for the context in which number appears.

The default number base is hexadecimal for addr and mask, elsewhere it is
decimal. If there is a conflict between a hexadecimal number and a register name
or symbolic name, the 0x base must be explicitly provided.

Note: Unlike standard “C” notation, a leading zero does not specify octal.

Examples: 0o377 == 0ff == 0xff == 0n255 == 255

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 133

5 MON Command Language
range Address Range

Syntax: �addr���L number�
addr addr2

*�:space�

Description: The range operand specifies the location of one or more objects in either a
memory address space or a register space for the Display and Enter commands.

addr Specifies the starting address for the range.

number Decimal number of objects in the range.

addr2 addr specifying the last address in the range.
The range consists of the objects through and including
the object at this address.

*�:space� All addresses in the virtual or specified memory space.

If addr is not supplied, the range begins where the range of the previous
Display or Enter command left off, or at virtual address 0 if this is the first Display
or Enter command. If neither “L number” nor addr2 is supplied, the range
consists of a default number of objects.

Examples: 100:0 L 10 // 10 objects beginning at offset 100 in kseg0 space.

my_ptr // Default number of objects at offset in space
// indicated by the symbol my_ptr.

dw 0 l 10 // Display 10 words.

db 0 L 10 // Display 10 bytes.

db 0 10 // Display 11 bytes.
134 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
reg_name Register Name

Syntax: See tables below.

Description: The reg_name operand is used to specify the address of any of the processor’s
internal registers or, in the case of PC, the current execution address. Some
registers have multiple names such as a generic name as well as the specific name
defined in the processor architecture manual.

In addition to the predefined names listed below, reg_name may be a user-defined
register name. See Register Definition File on page 23 for details. If a reg_name
matches the name of a symbol in the program being debugged, the name must be
prefixed with a “.” to be recognized as a register name.

MIPS Register Names

Register Name Description

r�0��31� Generic names for the 32 general registers.

zero Register r0 (always has the value 0).

at Register r1 (Assembler Temporary).

v0�v1 Registers r2 and r3 (results/expressions).

a0��a3 Registers r4��r7 (Arguments).

t0��t9 Registers r8��r15 and r24��r25
(Temporaries).

s0��s8 Registers r16��r23 and r30 (Saved
temporaries).

k�t��0�1� Registers r26 and r27 (Kernel/OS Usage).

gp Register r28 (Global data Pointer).

sp Register r29 (Stack Pointer).

ra Register r30 (Return Address).

mdhi�mdlo Multiply/divide special registers.

g�0��2�_�0��31� General registers $0��$31 for coprocessors
0..2.

c�0��2�_�0��31� Control registers $0��$31 for coprocessors
0..2.

fgr�0��31� Alternate naming convention for
Coprocessor 1 general registers $0��$31.

fcr�0��31� Alternate naming convention for
Coprocessor 1 control registers $0��$31.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 135

5 MON Command Language
ARM Register Names

�f�d��0��31� Alternate naming convention for
Coprocessor 1 general registers $0��$30
(only even numbers are valid). An f
reference implies single precision, a d
double precision.

sr�cause�epc�prid�index��
random�entrylo�context�
badvaddr�entryhi

System coprocessor (CP0) registers

tle# // TLB entry #Lo, even

tlo# // TLB entry #Lo, odd

th# // TLB entry #High

tm# // TLB entry #Mask

pc The current Program Counter. This is not
an actual register, but the address of the
next instruction to be executed.

Register Name Description

r0, r1, r2, r3, r4, r5,
r6, r7, cpsr

Unique registers.

r8, r9, r10, r11, r12,
r13, sp, r14, lr, r15,
pc, spsr

Banked registers, selected by the mode of the
processor (as determined by the 5 LSBs
currently found in cpsr).

r8_fiq, r9_fiq, r10_fiq,
r11_fiq, r12_fiq,
r13_fiq, r14_fiq, sp_fiq,
lr_fiq, spsr_fiq

Selects the FIQ mode registers.

r8_user, r9_user,
r10_user, r11_user,
r12_user, r8_usr, r9_usr,
r10_usr, r11_usr, r12_usr

user indicates non-FIQ mode registers.

r13_user, r14_user,
lr_user, sp_user,
r13_usr, r14_usr, lr_usr,
sp_usr

Selects the user mode or system mode
registers.

r13_svc, r14_svc, sp_svc,
lr_svc, spsr_svc

Selects the supervisor mode registers.

r13_irq, r14_irq, sp_irq,
lr_irq, spsr_irq

Selects the IRQ mode registers.

Register Name Description
136 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
Examples: r5

.a1

c0_12

CAUSE

sr.bev

mdhi

r13_abort, r14_abort,
sp_abort, lr_abort,
spsr_abort, r13_abt,
r14_abt, sp_abt, lr_abt,
spsr_abt

Selects the Abort mode registers.

r13_undef, r14_undef,
sp_undef, lr_undef,
spsr_undef, r13_und,
r14_und, lr_und, sp_und,
spsr_und

Selects the Undefined mode registers.

Register Name Description
MAJIC User’s Manual 0380-0163-10 Rev 2.01 137

5 MON Command Language
space Address Space Designator

Syntax: See tables below

Description: The space operand specifies an explicit address “space” for the address value it is
applied to. If no space is given, the address value is an offset in the default virtual
memory address space. In addition to the default virtual memory space, MON
supports the following spaces for all processors.

Space Designators For All Processors

The MIPS architecture maps several virtual address segments into a common
physical address space. These segments are not distinct address spaces in the usual
sense. Instead, accessing a memory location through a segment implies: a base
address in physical memory, the privilege level required to access the memory, and
a cacheable or uncacheable attribute. Refer to a description of the MIPS RISC
architecture for the complete details of memory segments.

The space designator tells the debugger to use the physical space, or to modify the
given virtual address by adding the base address of the segment specified. (See
Address on page 125.)

The exact mapping from virtual address to physical address is dependent on the
particular processor variant in use.

Space Designators for 32-bit MIPS Processors

Space Location

:P Physical Memory space

:DA Debug Agent Memory space

Space Location

:U offset from kuseg (default): 0

:0 offset from kseg0: 0x80000000

:1 offset from kseg1: 0xA0000000

:2 |:S offset from kseg2: 0xC0000000

:3 offset from kseg3: 0xE0000000

:R offset from reset vector: 0xBFC00000
138 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Command Language 5
Space Designators for 64-bit MIPS Processors

Space Location

:U offset from kuseg (default): 0

:XU offset from xuseg: 0

:XS offset from xsseg: 0x4000000000000000

:XP offset from xkphys: 0x8000000000000000

:XK offset from xkseg: 0xC000000000000000

:0 offset from kseg0: 0xffffffff80000000

:1 offset from kseg1: 0xffffffffA0000000

:R offset from reset vector: 0xffffffffBFC00000

:S offset from sseg: 0xffffffffC0000000

:3 offset from kseg3: 0xffffffffE0000000
MAJIC User’s Manual 0380-0163-10 Rev 2.01 139

5 MON Command Language
string String Literal

Syntax: "text"

Description: Quoted strings are used in string format find (DB,s) commands, string format
Enter Byte commands, and in the Display Value command.

text is any sequence of printable characters. Non-printable characters
may be included by using any of the following C-style “escape
sequences”:

To perform a “DB,s” command with no search value, or an interactive “EB,s”
command, the debugger searches for a null character as the string terminator and
automatically inserts a null at the end of a replacement string. But to perform a
search for a specific string (DB,s= “string”) or non-interactive Enter
(EB,s= “string”), the debugger will neither require a null character for the string
to match, nor insert a null automatically at the end of a replacement string. Such
strings can be explicitly given a null terminator by including \0 immediately
before the closing quote.

\b backspace (0x08)

\f formfeed (0x0C)

\n newline (0x0A)

\r carriage-return (0x0D)

\t tab (0x09)

\v vertical tab (0x0B)

\” quote

\’ apostrophe

\\ backslash

\ooo octal value (ooo is 1 to 3 octal digits)

\xhh hex value (hh is 1 or 2 hex digits)
140 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC User’s Manual 0380-0163-10 Rev 2.01
6
Tracing and Trace Points
Tracing is the ability to store or capture successive states of the target processor’s
operation. This information represents the processor’s flow of execution through
the program under test, and in some cases, data loads and stores as well. Once a
Trace Acquisition has been completed, it may be displayed by the debugger to
show a record of program flow. Most often this information is used to see how the
program made its way to a breakpoint, but in many cases you can use triggers to
capture an event in your system without stopping program execution. In some
cases, you can even display the trace data and then re-arm a new acquisition
without stopping program execution.

This chapter explains the trace buffer, trace control logic, and trace point
implementation of the MAJICMX and MAJICPLUS probes. It also shows examples
of using the trace features with the MON Command Language, and EDBICE Trace
Window. If you are using another debugger, please refer to their documentation for
information on displaying trace data and setting control options from within their
debugger.

Trace Buffer
The Trace Buffer is dedicated memory that captures the trace information in
real-time for subsequent processing and display. The collection of signals that are
captured by each trace-clock cycle is known as a trace frame.

Some processors provide a trace buffer right on chip. The MAJICMX and
MAJICPLUS probes read on-chip trace buffers via the JTAG interface. With some
processors this may take place while the processor is running (see Concurrent
Debug Mode on page 63); with other processors the execution must be stopped in
order to retrieve the trace data.

Some processors emit trace data on special pins rather than accumulating it in an
on-chip buffer. The MAJICPLUS probe provides its own trace buffer composed of
high speed memory and control logic for capturing trace data presented on an
external trace interface. The MAJICPLUS probe trace buffer is 512k frames deep,
so as many as 512k trace-clock cycles may be captured.
141

6 Tracing and Trace Points
Killing the Trace Buffer

The contents of the trace buffer can be killed with the kt command (described in
Kill Trace Data on page 108). This action cannot be undone. The trace acquisition
is automatically killed when execution is restarted if the acquisition had been
processed (displayed or saved). If execution resumes without having processed the
acquisition, however, then trace acquisition also resumes (subject to trace control
conditions, as described in Trace Control on page 149).

Trace Display Modes

The trace buffer can be displayed in either raw or formatted (disassembled) mode.
The display format of each mode can be set by the user to show only those signals
of interest, and assign meaningful names to the MAJICPLUS probe user inputs (or
any other signal). Customizing trace displays is described in Trace Display
Customization on page 147.

Many source-level debuggers provide a separate window to display the trace
buffer. In EDBICE, a scroll bar is used to scroll through the trace buffer, and
buttons or menu choices select the display mode and timestamp format. The
Refresh button in the trace window uploads a new acquisition from the MAJIC
probe, if there is one.

The dt command displays the trace buffer, and may also be used to select the
display mode and timestamp format. The first dt command after a new capture
normally starts with the most recent frame, and subsequent display trace
commands move backward in time. It is also possible to start at any arbitrary frame
number, and scroll in either direction. See Display Trace on page 87 for details.

Examples:

dt 1,i /*Display from the oldest frame, in instruction format*/

dt 1,rd /*Display oldest frames in raw mode with delta timestamp*/

dt $,i /*Display from most recent frames in instruction format*/

dt - /*Display next screen, scrolling backward in time*/

dt + /*Display next screen, scrolling forward in time*/

dt /*Display next screen in current direction*/

The EDBICE Session window also supports the display trace (dt) command,
allowing the trace display to be logged in an ASCII file. This also allows you to
view two regions of the trace capture, or view it in two different modes (one view
in the Trace window and the other in the Session window).

NOTE: If your source-level debugger does not provide a trace window, you can use
the DT command to display trace data. For information on entering MON
commands in foreign debuggers, see MON Command Basics on page 71.

i

142 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Tracing and Trace Points 6
Disassembled Trace
Display

In disassembled, or formatted mode, the contents of the trace buffer are
deciphered, and displayed as a history of disassembled instructions and possibly
data. A sample disassembled trace display is shown below.
.

The frame number indicates the frame’s location within the trace buffer. The oldest
frame is number 1, more recent frames have higher frame numbers. In
disassembled mode, the frame may not always increment by 1. This is because
only those cycles where an instruction was executed or a data transfer completed
are displayed. The address and instruction value are displayed next, followed by
the disassembled instruction.

The EDBICE Trace window interleaves source lines wherever an instruction
address corresponds to the first instruction of a source line. Clicking with the right
mouse button on one of these source lines allows you to “hyperlink” the execution
window view-point to the corresponding line in your source code. The eXDI
Plug-In for Microsoft Platform Builder provides a similar trace window. The DT
command does not provide any source information, but does include symbols
where possible.

A time stamp can be displayed to show how much time elapsed between
frames.The Time Stamp column may be disabled or enabled, and its display format
may be changed by right-clicking in the trace window.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 143

6 Tracing and Trace Points
Raw Trace Display In raw mode, the state of each of the traced signals is displayed for every captured
cycle, along with the time stamp. The display has a header on top, including an
indication of each signal’s polarity (active level). A sample raw trace display is
shown below:

The frame number is in the left most column, with more recent cycles having
higher numbers, and the oldest frame as number 1. In MONICE, the minus signs in
the column separator (beneath the word “FRAME”) change to plus signs when
scrolling forward in time.

NOTE: The raw trace information is not normally uploaded because this
information is not typically useful. If you do want to view the raw signals, when
using the MAJICPLUS mini-probes for example, you should enable the
Trace_Upload_Raw configuration option (see page 166). You will need to
refresh the window after changing this option.

Time Stamp

The MAJICPLUS probe trace buffer does not record a timestamp because the
disassembly algorithm requires a continuous stream of information, so every clock
cycle must be captured. However, not every cycle has information that is useful to
the debugger, so normally only the frames that are useful are uploaded, and a
timestamp is synthesized to account for those cycles which were filtered. This
trace upload optimization can be defeated with the Trace_Upload_Raw
configuration option (see page 166).

Although the MAJICPLUS probe disassembly algorithms for PCTrace and ETM
require contiguous frames, there are two reasons why there may be gaps between
periods of contiguous frames. The first is if program execution (and hence tracing)
stops and is then restarted without first processing the trace buffer, either by user
command or because a breakpoint is hit whose pass count has not been reached.

i

144 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Tracing and Trace Points 6
The second is if a trace gate is used to control trace acquisition (see Conditional
Tracing on page 151). When the disassembly algorithm encounters such gaps in
the trace buffer, it reports a 1,000,000 cycle gap, because it cannot determine the
actual duration of the gap.

NOTES:

• The on-chip trace buffer within the Intel® XScaleTM Micro-Architecture
does not provide any timing information, so the timestamp simply
increments by one on each frame.

• The Lexra internal trace buffer provides an optional stall counter. If
present, the stall count is used to compute an approximate timestamp.

The time stamp can be displayed in three formats: the absolute number of cycles
which have elapsed since Trace Control was enabled; the number of cycles relative
to the first frame in the trace buffer; or the delta from each frame to the previously
displayed frame. It is also possible to inhibit the time stamp display altogether. The
display mode in effect is shown in the column header, beneath the word
“TIMESTAMP”. By default, the timestamp is included in raw mode displays and
omitted from disassembled displays, but the timestamp mode can be changed with
the dt command, or by right-clicking in the Trace window.

MAJICPLUS Probe Trace Inputs

Each MAJICPLUS probe frame consists of all the target processor’s trace signals,
several internal emulator signals, and optionally, 8 additional user probe signals.
These signals are part of the “raw” information that normally is not uploaded. To
upload these signals, you must make sure to enable the Trace_Upload_Raw
option (described on page 166).

EJTAG/PCTrace Trace Signals

NOTE: Not all processors provide the same level of PCTrace support. The
MAJICPLUS probe automatically detects the level of PCTrace that is
supported, and reports that when the JTAG interface is initialized. The

i

Signal Description

PCSTA[2:0] This is the primary execution status code.

PCSTB[2:0] This is the second execution status code, if the trace clock is
half or less of the internal pipeline clock.

PCSTC[2:0] This is the third execution status code, if the trace clock is
one third or less of the internal pipeline clock.

PCSTD[2:0] This is the fourth execution status code, if the trace clock is
one quarter of the internal pipeline clock.

TPC[7:0] This is the bus where PC information is presented. The
processor may provide 1, 2, 4, or 8 TPC bits.

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 145

6 Tracing and Trace Points
information captured on unsupported trace signals is undefined, but is
ignored by the trace processing software.

ARM/ETM Trace Signals

COMMON Trace Signals

NOTE: Because the mini-probe is separate from the processor connection,
the sample point (in time) of the user probes is not tightly coupled to the
processor’s trace clock. Furthermore, user probes are generally used with
signals that are not synchronous to the trace clock. This imposes a
restriction that a signal must remain in a high or low state for at least two
trace clock cycles for that state to be captured. This may also cause a
slight skew between the processor’s trace signals and the user probes in the
trace buffer.

Signal Description

TSYNC (TRACESYNC) This signal is asserted to indicate the 1st
packet of a PC Branch Address on the TracePkt pins.

PSTAT[2:0] (PIPESTAT) Pipeline status execution codes. These codes
indicate whether the ARM processor has executed a
instruction, branched, a trigger occurred, data was traced,
ETM fifo is empty, etc. It is also reused by the ETM to
output an APO (Address Packet Offset) for Branch
Addresses.

TPKT[n-1:0] (TRACEPKT) Trace Packet. This bus provides the Trace
Address and Data information. The Trace Packet port can be
user selected for 4, 8 or 16 bits wide (up to the maximum
number of pins brought out on the processor).

Signal Description

U[7:0] These are the user test points monitored by the mini-probe.
See Mini Probe on page 7 for information on mini-probe
connection.

EXCEPT This “signal” is synthesized by the trace processing
software. It is asserted (high) on every cycle where the
processor reports that an exception was taken. Using
EXCEPT as a trace filter (see Filtered Trace Display on
page 147) makes it easy to locate exceptions within the
trace buffer.

TPOINT This “signal” is synthesized by the trace processing
software. It is asserted (high) on every cycle where the
processor reports that a trace point was hit. Using TPOINT
as a trace filter (see Filtered Trace Display on page 147)
makes it easy to locate trace points within the trace buffer.

i

146 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Tracing and Trace Points 6
Trace Display Customization

The +tf (Enable Trace Format) and -tf (Disable Trace Format) commands
enable and disable the display of any field.

The etn (Enter Trace Name) and etf (Enter Trace Format) commands allow a
trace field name to be defined, and the raw and disassembled display formats to be
completely customized; reorganize the columns, their colors, column headers, add
raw signals and groups to the formatted display, etc. The dtn (Display Trace
Names) and dtf (Display Trace Format) commands display the format settings.

The etm (Enter Trace Mode, not to be confused with the ARM Embedded Trace
Macrocell) command controls the display mode that is affected by the trace
formatting commands.

Example:

NOTE: On-line help is available for each of these commands. See also
H fmt_options for a list of formatting options that can be applied.

Trace display customizations can be saved to a file and read back in to restore the
display format in future debug sessions.

Examples:

FW TF filename

FR TF filename

Filtered Trace Display

A filter can be applied when displaying the trace buffer to restrict the display to
frames that meet one or more criteria. This facilitates searching for particular
conditions which may be scattered throughout the trace buffer. Only the frames
that match any of the specified filters are displayed. A filter is expressed as one or
more signals, logically AND’ed (see Enter Filter on page 93).

MON> etn MYSIG u7 /* Assign name to user probe bit 7 */

MON> etm i /* Select instruction display mode */

MON> etf MYSIG ia=frame /* Insert after (ia) “frame” column */

MON> dtf /* Show display formats */

MON> etm r /* Select raw display mode */

MON> etf MYSIG ib=except /* Insert before (ib) “except” column */

MON> -tf u /* Disable U column (user probes) */

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 147

6 Tracing and Trace Points
Examples:

ef tpoint /* Display frames where TPOINT is asserted */

ef location = 0 FFFFF /* Display instructions executed in
first 1Meg */

df /* Display Filters */

-f1 /* Disable Filter 1*/

+f2 /* Enable Filter 2 */

It is an important distinction that the display of trace frames is filtered, not the
accumulation of them. The filters may be enabled, changed, or disabled without
affecting the contents of the trace buffer. Conditional capturing is accomplished
using Trace Control features (see Trace Control on page 149).

NOTE: When trace filtering is enabled, but there are not many frames that match
the filter(s), it will take a long time to refresh or scroll the trace window.

Searching for Trace
Frames

Filters can be used to search for a particular condition by restricting the display to 1
frame. The following example shows how to find the first, second, and last call to
strcmp:

Example:

NOTE: It is best to close the trace window during this process.

Trace Display Files

The trace buffer can be saved to a disk file, and later read back in. The file is a
binary representation of the captured signals and buses, plus additional information
derived from the traced information to identify instruction and data cycles.

When a trace file is read back in, it supersedes the existing trace information, and
can then be displayed as usual. However, the symbolic information is not saved in
the trace file, so no symbolic information is shown if a trace file is displayed
without having the executable loaded. Furthermore, if the executable file which is
loaded when a trace file is displayed is a different version than when it was
captured, it could present misleading symbol information.

Only the entire trace buffer can be saved in this way - it is not possible to save only
certain frames. Of course, it is possible to capture specific frames in an ASCII file
by logging screen output, but such a file can get quite large. Also, it is not possible
to read the trace information back into the debugger from an ASCII file.

i

MON> etm i /* Set trace mode = instruction */

MON> ef location = strcmp /* enter filter */

MON> dt 1 L 1 /* find first */

MON> <Enter> /* find next */

MON> dt $ L 1 /* find last */

i

148 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Tracing and Trace Points 6
Examples:

fw td tbuf1 /* Saves the trace buffer as tbuf1.td */

fr td tbuf1 /* Reads tbuf1.td, superseding current trace
information*/

fw o mytrace /* Opens a log file */

dt 1234 5678,i /* Displays and logs frames 1234 through 5678 in
instruction format in ASCII*/

fw o - /* Closes the output log file */

Trace Control
By default, trace information is captured whenever tracing is armed and the
processor is executing. That way whenever a breakpoint is hit, the trace buffer
provides a record of how the processor made it’s way through the program to reach
that point. However, it is often desirable to capture only certain information based
on criteria other than execution status.

The MAJICPLUS probe provides two basic means of controlling what information
gets captured: a trigger defines a point in time when trace frame acquisition either
starts or stops, thereby preserving either the history leading up to the trigger event,
or program flow following the trigger event; a gate suspends trace frame
acquisition while a certain condition is true, and resumes acquisition when the
condition is no longer true. The MAJICPLUS probe provides several types of
triggers and gates, and both techniques may be used together for more
sophisticated scenarios.

With processors that provide a trace buffer on-chip, the MAJICMX or MAJICPLUS
probes may not be able to provide the same level of control. The trigger capability
depends on the trace buffer implementation of the processor.

Trace Enable

Trace acquisition is enabled by the +te command (or button), and disabled with
the -te command (or by toggling the +te button). Tracing may be enabled and
disabled without losing trace data that has already been acquired, so by using these
commands in breakpoint command lists, you can selectively enable tracing only
when executing in certain areas of your code. For best results, you should enable
tracing prior to a function call or branch, as opposed to right at the function’s entry
point or branch target.

Trace Triggers

Two configuration options are used to specify a trigger event and trigger action.
Configuration options can be set with either the Option Settings dialog box, or the
EO command, as described in Setting Configuration Options on page 32.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 149

6 Tracing and Trace Points
NOTE: With the Intel® XScaleTM on-chip trace buffer, only
Trace_Trigger_Action is supported; Trace_Trigger always behaves as in
auto mode.

Trigger Position The Trace_Trigger_Action configuration option controls the trigger position.

Stop Trace acquisition starts when program execution starts,
and stops when the trigger event occurs; this is the default,
and is often referred to as a pre-trigger acquisition. If the
trace buffer fills up before the trigger event stops the
acquisition, then older frames are removed as necessary to
make room for newer frames, until the trigger event. That
way, the execution history leading up to the trigger event
is preserved.

In the automatic trigger mode (described below), trace
acquisition will resume when program execution is
restarted. In any other trigger mode, once the trigger
event has occurred, the trace buffer is preserved until the
trace buffer has been processed (displayed, saved to a file,
or deleted).

Start Trace acquisition starts when the trigger event occurs, and
stops when the trace buffer is full; the trace buffer is then
frozen until it has been processed (displayed, saved to a
file, or deleted). That way, the execution history starting
from the trigger event is preserved.

In the automatic trigger mode (described below), trace
acquisition starts when program execution is started. In
any other trigger mode, the MAJICPLUS probe trace buffer
actually starts capturing shortly before the trigger event to
help the trace disassembly algorithm establish the
program context at the trigger point.

Trigger Event The Trace_Trigger configuration option specifies the trigger event.

Auto Trace acquisition is automatically triggered by the start or
stop of program execution; this is the default.

TPoint Trace acquisition is triggered by the first trace point
reported by the target processor. Please see Trace Points
in EJTAG/PCTrace on page 152 for details on setting
trace points.

External Trace acquisition is triggered the first time the external
TRACE ENABLE input is asserted. This is a BNC type
connector on the rear panel of the MAJICPLUS probe that
may be connected to the trigger output of another MAJIC
probe, or other external test equipment.

The Trace_Enable_Polarity option specifies the
active level of the TRACE ENABLE input. When set to
high, tracing is triggered on the rising edge, and when to
low, tracing is triggered on the falling edge.

i

150 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Tracing and Trace Points 6
Ext_or_TP Trace acquisition is triggered by the first occurrence of
either a trace point or the external TRACE ENABLE
input, as defined above.

NOTE: External trigger is not supported with on-chip trace buffers. The
Trace_Trigger option is not supported with Intel® XScale™
Micro-Architecture; it always behaves as in auto mode.

Conditional Tracing

The Trace_Gate configuration option specifies whether or not trace acquisition is
conditional. Note that Trace_Gate only qualifies trace data acquisition, not
trigger event detection.

None Trace acquisition is not qualified by anything other than
the trigger; this is the default.

External Trace acquisition is inhibited when the external TRACE
ENABLE input is in its negated state, as defined by the
Trace_Enable_Polarity option, and allowed when
the external TRACE ENABLE input is in its asserted
state.

Stall Trace acquisition is inhibited after the processor has been
in a stalled state (i.e. has not executed any instructions) for
approximately 500 consecutive cycles. This makes it very
easy to trace program execution leading to a hung system
condition. If program execution does resume after
stalling for such a long time, tracing will resume (because
this is a gate, not a trigger). However, there is a slight
delay is restarting the trace acquisition, so several
instructions may be omitted from the trace buffer in this
case.

Stall_Or_Ext Tracing is inhibited if either the external TRACE
ENABLE input or excessive stall condition would inhibit
it, as described above.

NOTES:

• Remember that in order to process the trace buffer, it is necessary to fetch
some instructions from memory. If the processor stalled because the
memory controller hung, as many will do if an illegal memory access is
initiated, then it may be necessary to reset the target before displaying the
trace buffer. Furthermore, if such a reset will destroy the contents of your
code space, you should re-download the code prior to processing the trace
acquisition.

• With ARM/ETM, the Stall mode may be used to suspend tracing while
in a non-trace area, providing that cycle accurate trace mode is not
enabled.

• Trace_Gate is not supported with on-chip trace buffers.

i

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 151

6 Tracing and Trace Points
Trace Points
Some processors provide Trace Points, a variation on hardware breakpoints that
assert an external indication when hit, instead of stopping program execution. The
MAJICPLUS probe builds upon the processor’s trace point capability to provide a
number of higher level debug features:

• Trigger the start or stop of trace data acquisition.

• Set marker flags in the trace buffer to facilitate searching for particular
events within the acquisition.

• Assert an external trigger signal suitable for triggering other test
equipment.

NOTE: If you are using a third-party debugger with the MAJIC probe, these
additional features will be available only if the debugger user interface supports
setting trace points.

Trace Points in ARM/ETM

With ARM/ETM, the MAJICPLUS probe uses the ETM Trigger event as the Trace
Point.

Trace Points in EJTAG/PCTrace

With EJTAG/PCTrace, a Trace Point is a variation on hardware breakpoints that
emits a trigger indication rather than stopping program execution. A Trace Point is
set within the Breakpoint Editor dialog box. The breakpoint type must be one of
the hardware breakpoint types, and the Trace Point checkbox must be checked, as
shown below.

i

152 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC User’s Manual 0380-0163-10 Rev 2.01
A
Ethernet Considerations
This appendix describes how to connect the MAJIC Intelligent Debug Probe to a
new or existing network. The Ethernet set-up information is divided into three
sections:

• Considerations for All Networks below

• Considerations for PC Networks on page 156

• Information for Network Administrators on page 156

Considerations for All Networks

Cabling

The MAJIC probe supports both 100Base-T and 10Base-T (twisted-pair) network
cabling. It can be connected to an existing network just like any PC or workstation.
If the MAJIC probe is being connected point-to-point, directly to a host computer’s
Ethernet port, then a cross-over cable is required.

The Ethernet connector (RJ-45) has the following pin-outs:

Pin 1 TD+ (leftmost pin on the MAJIC probe connector)

Pin 2 TD-

Pin 3 RD+

Pin 4 Not used

Pin 5 Not used

Pin 6 RD-

Pin 7 Not used

Pin 8 Not used

The Ethernet cable uses four wire-pairs with the pin-outs as shown below:
153

A Ethernet Considerations
Network Addresses

Every Ethernet equipped device is assigned a hardware address, an IP address, and
(usually) a host name. Your network administrator will need to know the hardware
address and desired host name. The administrator should provide the IP address
and, in some cases, gateway and netmask information.

Hardware Address Every Ethernet equipped device has a unique hardware level address called its
“Ethernet address” or “MAC address”. This address is a 48 bit number, usually
expressed as six hexadecimal byte values separated by colons, as in
“00:80:CF:00:00:68”. This address is assigned by the manufacturer. The MAJIC
probe’s Ethernet address is printed on a label attached to the back of the unit. If the
label is damaged or missing, the Ethernet address can be determined by connecting
a debug terminal or a terminal emulation program (such as HyperTerminal) to the
RS-232 port prior to powering up the MAJIC probe. The terminal should be set for
9600 baud, 8 bits, no parity, no handshaking.

IP Address When using the TCP/IP network protocol, each device on the network also has a
unique address called its “Internet address” or “IP address”. This address is a 32
bit number, usually expressed as four decimal byte values separated by dots, as in
“15.6.72.80”. The IP address is assigned by the network administrator (that’s you,
or someone in your organization).

For existing networks where TCP/IP networking is already set up on your PC, it is
important to assign an IP address to the MAJIC probe that is consistent with the
rest of the IP addresses used by your network. The high order bytes are used to
identify the network or sub network, while the low bytes identify the individual
node.

For a point-to-point connection (that is, you are just connecting the MAJIC probe
to a single host computer and have no other networking in mind), you will be
creating two IP addresses - one for the MAJIC probe and one for the host
computer. In this case the addresses are arbitrary, but we suggest using
192.168.10.1 for the host computer, 192.168.10.2 for the MAJIC probe, and
255.255.255.0 for the subnet mask. In Windows, these settings are made in the IP
Address tab of the TCP/IP Properties dialog, which is opened from the Network
icon in the Control Panel. You should also disable DNS and WINS name
resolution in the DNS and WINS Configuration tabs.

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Normal Cross-Connect
154 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Ethernet Considerations A
Host Name While the network software identifies each network node by its IP address, the user
needs some more meaningful method. Therefore each node is also assigned a
unique “host name”, an alphanumeric identifier that is easier for humans to
remember and use (for example: “joes_pc”). Host names are also assigned by the
network system administrator, and the network software maintains a table of host
names and their corresponding IP addresses.

If you are connecting the MAJIC probe directly to the PC, and the PC is not
connected to a network, a name-to-IP address table named hosts must be created
on your PC, since there is no network-wide name server. You should find a hosts
file (or sample named hosts.sam) in your main Windows directory (usually
C:\WINDOWS or C:\WINNT\system32\drivers\etc). With a text editor such as
notepad, add a line to the end with the IP address and name you want to use for
the MAJIC probe, as described by the comments already in the file.

Making a Connection

In order for the debugger program to establish a connection to the MAJIC probe
over the network, both the host and the MAJIC probe must know each other’s
Ethernet and IP addresses.

When you start the debugger, you specify the host name of the MAJIC probe. The
host computer first translates the MAJIC probe’s host name to an IP address, either
by looking it up in a local “hosts” table, or by sending a query to another machine
on the net that provides name translation services. Alternatively, you can specify
the IP address directly instead of a host name.

Before the first data packet can be sent to the MAJIC probe, the host must know
the MAJIC probe’s Ethernet address. If the IP address to Ethernet address
translation is not already known, the host will broadcast an ARP (Address
Resolution Protocol) request packet to all nodes on the network. If the MAJIC
probe is connected, turned on, and knows its IP address, it will respond to this
request with an ARP response packet containing its Ethernet address. At that point
the host has all the information it needs to establish the communications session
with the MAJIC probe.

In order to respond to the ARP broadcast, the MAJIC probe must know its IP
address. Normally, the MAJIC probe’s IP address is permanently stored in
non-volatile flash ROM via a debugger command (see Static IP on page 9 and
Configuration Options on page 159). If this internal value is 0.0.0.0 (the factory
default), then the MAJIC probe must acquire its IP address from some other host
on the network each time it is powered up. You can do this manually or set up a
server to automatically set the MAJIC probe’s IP address.

NOTE: Windows supports the arp -s command but it does not work correctly in
Windows 95/98 if you are connecting your PC directly to the MAJIC probe rather
than to a network.

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 155

A Ethernet Considerations
Considerations for PC Networks
The MAJIC probe uses TCP/IP to communicate over Ethernet. Windows comes
with TCP/IP support built-in. You need to make sure the TCP/IP protocol is
installed and properly configured using the Network icon in the Control Panel.

Information for Network Administrators
This section provides additional details about the MAJIC probe’s Ethernet
firmware. It is not necessary to read this section to successfully attach the MAJIC
probe to your network, but it is provided in case the network system administrator
wants complete information.

The MAJIC probe uses UDP/IP for communicating with the debugger. It supports
ARP/RARP and BOOTP for automatic IP assignment (but not DHCP, presently),
and ICMP for network connectivity testing. The MAJIC probe has only its
Ethernet address built-in; until it is configured, it does not know its IP address, or
any other Internet related information.

In general, EPI recommends using static IP addresses programmed into
non-volatile memory (NVRAM) using the Tv_Ip_Address option as described
on page 167. If this is not done, the MAJIC probe attempts to discover its IP
address by broadcasting a BOOTP request packet onto the local Ethernet. It also
broadcasts a RARP request packet onto the local Ethernet.

If a BOOTP response packet is received, the MAJIC probe will use information
from that packet. If the packet is in the form described by RFC-1048 and
RFC-1084, then the gateway and subnet mask information will also be taken from
that packet.

If a RARP response packet is received, then the MAJIC probe will use the IP
address supplied by that packet.

If both BOOTP and RARP are supported on the local network, then the first
response received will be used to initialize the MAJIC probe. Since the BOOTP
request is sent first, it is likely, though not guaranteed, that the BOOTP response
will be received first.

If the IP address is not configured in NVRAM, and neither BOOTP nor RARP are
supported on the local network, then the first system which sends an IP packet to
the MAJIC probe will cause the MAJIC probe to assign its IP address from that
packet. The only way that this is feasible is if the host sending the packet has had
its ARP table initialized to know about the MAJIC probe. Under most systems, the
arp -s... command can be used to achieve this effect. In any event, if a
subsequent BOOTP or RARP response packet is received, that information will
override any IP address assignment.

For subnetted networks, the subnet mask and gateway IP address can be
configured into NVRAM using the Tv_Ip_Netmask and Tv_Ip_Gateway
156 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Ethernet Considerations A
options described on page 167. If this is not done, and the MAJIC probe can not
get the subnet mask and gateway IP address from a BOOTP server, the debugger
can pass this information in the initial connection packet. To do this, the gateway
IP address, and optionally the subnet mask, can be added to the debugger’s device
name parameter using the syntax:

icename:e�,gateway_IP�,subnet_mask���
MAJIC User’s Manual 0380-0163-10 Rev 2.01 157

A Ethernet Considerations
158 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC User’s Manual 0380-0163-10 Rev 2.01
B
Configuration Options
This appendix describes the configuration options. Note that not all options are
supported for all target types or debugger environments (see also Configuration
Options on page 32).

The following list shows the options which must be set correctly to successfully
connect the MAJIC probe to your target (discussed in Chapter 3, Debug
Environment, on page 15):

• Ice_Jtag_Clock_Freq

• Ice_Jtag_Use_Trst

• Ice_Power_Sense

• Ice_Reset_Output

• Trgt_Little_Endian

• Trgt_Resets_Jtag

Option Valid values Default

At_Go_Command " " " "

The At_Go_Command option string is executed as a command each time target execution starts, except when instruction
stepping (step-over can sometimes do a go operation with an automatic breakpoint set). High-level code stepping can also
lead to go operations. In such a case, a go operation is done then the command string is executed at that time.

NOTE: Execution commands like continue (C) and (S) single stepping must NOT be used in this option. Results are not
predicable.

At_Stop_Command " " " "

The At_Stop_Command option string is executed as a command each time target execution stops, except when completing
an instruction step (step-over can sometimes do a go operation with an automatic breakpoint set). High-level code stepping
can also lead to go operations. In such a case, a go operation is done and upon stopping this command string is executed.

Calling_Convention n32, o32, o64 o32 (32-bit MIPS)
n32 (64-bit MIPS)

The Calling_Convention option allows you to tell the debugger which calling convention was followed by the
compiler for the program under test. o32 is the original MIPS standard R3000 calling convention. n32 is the newer MIPS
standard for R4000 (MIPS 3 ISA and later) processors with 32 bit pointers. The EPI compiler generates n32 by default.
o64 refers to the calling convention used by many GNU compilers for the R4000.
159

B Configuration Options
Cp_Code_Address 0x80

Word-aligned address of 32 bytes of RAM that can be used for poking instructions to access ARM coprocessors. This
memory is saved and restored to its original contents.

Dp_Color on, off off

Setting this option on activates all Dp_Color_* options.

Dp_Color_Backgnd black, red, green, yellow, blue,
magenta, cyan, white

black

This option sets the screen background color during the MON session.

Dp_Color_Default black, red, green, yellow, blue,
magenta, cyan, white, b_red, b_green,
b_yellow, b_blue, b_magenta, b_cyan,
b_white, reverse

white

This option sets the default foreground color that is used by the debugger when color support is disabled by setting the
Dp_Color option to off.

Dp_Color_Default_Bgnd black, red, green, yellow, blue,
magenta, cyan, white

black

This option sets the default background color that is used by the debugger when color support is disabled by setting the
Dp_Color option to off.

Dp_Color_Err_Msg black, red, green, yellow, blue,
magenta, cyan, white, b_red, b_green,
b_yellow, b_blue, b_magenta, b_cyan,
b_white, reverse

b_red

This option sets the color for error messages.

Dp_Color_Input black, red, green, yellow, blue,
magenta, cyan, white, b_red, b_green,
b_yellow, b_blue, b_magenta, b_cyan,
b_white, reverse

white

This option sets the color for all input echoed to the screen.

Dp_Color_Output black, red, green, yellow, blue,
magenta, cyan, white, b_red, b_green,
b_yellow, b_blue, b_magenta, b_cyan,
b_white

green

This option sets the color for normal character output.

Dp_Color_Prompt black, red, green, yellow, blue,
magenta, cyan, white, b_red, b_green,
b_yellow, b_blue, b_magenta, b_cyan,
b_white, reverse

cyan

This option sets the color for the prompt string.

Option Valid values Default
160 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Configuration Options B
Dp_Color_Standout black, red, green, yellow, blue,
magenta, cyan, white, b_red, b_green,
b_yellow, b_blue, b_magenta, b_cyan,
b_white, reverse

yellow

This option sets the color for all important (non-error) information.

Dp_Color_Use_Ansi on, off off

Setting the Dp_Color_Use_Ansi option to on causes the debugger to implement color changes via ANSI escape
sequences rather than using the Win32 Console API functions.

This option is provided because the Console API does not work reliably on Windows 95, 98, and ME systems, apparently due
to a bug in the DOS box emulator. The Console API method is reliable and recommended for Windows NT, 2000, and XP
users. Enabling this option requires that the ANSI.SYS driver is loaded by your CONFIG.SYS file.

Edb_Go_Interactive_Mode on, off off

By default, the GO button starts or continues execution in normal non-interactive mode. Setting this option On causes the
GO button to start or continue execution in interactive (concurrent) mode.

NOTE: This option is only available in EDBICE.

Edit_Insert_Mode on, off off

Setting the Edit_Insert_Mode option to on sets MON’s edit mode to INSERT. Normally, the default edit mode is
OVERTYPE (like DOS). You can still toggle between these modes with the Ins key during a session.

Ice_Cache_Rom_Bp off, on off

The Ice_Cache_Rom_Bp (icrb) configuration option controls whether software breakpoints in ROM are supported by
locking them into the instruction cache. Not available with all target processors.

Ice_Debug_Boot on, off

Normally, the MAJIC probe will configure the processor to enter debug mode immediately when reset. If the
Ice_Debug_Boot (idb) configuration option is off, the processor will execute code from the reset vector until the
MAJIC probe halts it and takes control.

Ice_Jtag_Clock_Delay 0 0 - 250

When the software JTAG engine is enabled (by setting the Ice_Jtag_Clock_Freq option to 0), this option can be used
to specify a minimum pulse width for the JTAG clock (TCK), in microseconds. Slowing down the JTAG clock may be
necessary in some special situations. A value of 0 disables the extra clock delay logic, and the minimum TCK pulse width
will be less than one microsecond.

Ice_Jtag_Clock_Freq 0 - 40 10

A setting from 1-40 sets the frequency of the JTAG clock (TCLK), in MHz. A value of 0 disables the hardware JTAG
engine, and uses a JTAG driver implemented in software. In this mode, TCLK will normally be stopped, and then when a
JTAG operation is performed, will burst at a variable frequency, typically less than 10kHz.

Ice_Jtag_Tap_Count 1 0 - 1023

This option lists the number of devices (TAP controllers) detected on the JTAG scan chain. If there is more than 1 device on
the chain, then the Ice_Jtag_Tap_Select (ijts) option must be set to select the device that the MAJIC probe should
connect to.

Option Valid values Default
MAJIC User’s Manual 0380-0163-10 Rev 2.01 161

B Configuration Options
Ice_Jtag_Tap_Select 1 0 - 1023

If the JTAG interface (TAP controller) of the CPU to be controlled is one of several in a JTAG daisy-chain, this option is used
to select which device on the JTAG scan chain should be used. Devices are numbered 1 to N, where N is the number of JTAG
controllers (see the Ice_Jtag_Tap_Count option). Device 1 is connected to the MAJIC probe’s TDO signal, and device
N is connected to the MAJIC probe’s TDI signal. See JTAG Interface on page 40.

Ice_Jtag_Use_Rtclk on, off off

The Ice_Jtag_Use_Rtclk enables or disables adaptive clocking mode on the JTAG interface. This option should be on
if the RTCLK signal on the JTAG connector is used by your target system. Otherwise it should be off.

Ice_Jtag_Use_Trst on, off on

The Ice_Jtag_Use_Trst option specifies whether your target system uses the TRST* signal to reset the JTAG port.
This option should be on if you have connected TRST* on the JTAG connector to your processor in a standard way. If your
target uses the TRST* signal in a non standard way, or simply does not use it, this option should be off.

Ice_Power_Sense off, rst, trst, vref off

The Ice_Power_Sense option specifies which signal to use for target power detection. If the debug connector on your
board has a dedicated voltage reference pin, then vref should be selected. Otherwise, if RST* or TRST* is pulled up to the
I/O voltage of your processor, then rst or trst should be selected. Setting this option to off disconnects the MAJIC
probe from the target processor. See Target Power Management on page 40.

Ice_Reset_Output on, off off

The Ice_Reset_Output (iro) configuration option controls whether the probe asserts its reset output signal when a
Reset command is issued by the debugger. Note that the EPI debuggers perform a reset whenever the program is downloaded.
This option does not affect the operation of the Reset Processor (RP) or Reset Target (RT) command. See Reset Management
on page 43.

Ice_Reset_Peripheral on, off on

The Ice_Reset_Peripheral (irp) configuration option controls whether the probe resets peripherals via the EJTAG
control register when a Reset (R), Reset Processor (RP), or Load (L) command is issued by the debugger. This option does
not affect the operation of the Reset Target (RT) command (see Reset Management on page 43).

Ice_Trigger_In none, run_sync, break, jtag_sync none

The Ice_Trigger_In (iti) configuration option controls what action is taken when the MAJIC probe’s TRIGGER IN
(BNC) input is asserted (low):

none TRIGGER IN is ignored.

run_sync Start of program execution is delayed until TRIGGER IN is asserted, and stopped when TRIGGER IN is
negated.

break Start of program execution is not qualified, but the assertion of TRIGGER IN stops program execution.

jtag_sync If Ice_Jtag_Clock_Freq is set to 0, then the software JTAG driver delays each TCK edge until the
previous edge is detected on TRIGGER IN. This allows the speed of the JTAG clock to be dynamically
limited by a target-synchronized version of TCK connected to TRIGGER IN. Please see the Using MAJIC
with Hardware Emulation Systems Application Note for more information on this feature.

Option Valid values Default
162 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Configuration Options B
Ice_Trigger_Out none, run_sync, mem_acc, mt_err,
tpoint

none

The Ice_Trigger_Out (ito) configuration option controls when the MAJIC probe’s TRIGGER OUT (BNC) output is
asserted (low):

none Always negated (high).

run_sync Asserted when stepping or running, and negated between steps or upon stopping.

mem_acc Asserted before and negated after each emulator generated target memory access.

mt_err Asserted momentarily when MT detects a memory test failure.

tpoint Asserted momentarily when a trace point is encountered (valid only with the MAJICPLUS probe and trace
capable processors). See Trace Points in EJTAG/PCTrace on page 152 for additional information.

Load_Absolute_Syms on, off off

This option specifies that absolute-valued symbols are included when MON loads a program.

Load_Entry_Pc on, off on

The load_entry_pc option is set to on so that the PC register is loaded with the entry point value of the loaded program
at load time. For MONICE users: if multiple programs are loaded via the same load (l) command, the entry point is taken
from the first referenced program.

Load_Osboot on, off on

The boot code may either be linked directly with your application code, or it may be provided in a separate executable
module. If the boot code is linked with the application code, then the load_osboot option should be turned off. If you
prefer to use a separate program module for your boot code, then it must be named osboot.sys, it must be available
according to the file search algorithm described in the debugger manual, and the load_osboot option must be turned on.

Reset_Address 0xa0000000 - 0xbfffffff 0xbfc00000

The Reset_Address option controls the initial program pointer (PC) after a reset operation is issued through the debugger.
When set to the actual reset vector, no special processing takes place. When set to any other value, the debugger sets the
(conceptual) PC as specified by this option after each reset or download command. Note that the EPI debuggers normally
perform a reset whenever the program is downloaded, unless inhibited with the Reset_At_Load option.

NOTE: For MIPS processors, the Reset_Address must be set somewhere within kseg1. For 64-bit processors, this
requires that you either enter 8 leading Fs, or use offset:seg notation (for example: 1000:1, which means offset 1000
within kseg1).

The initial setting of this option can be set with the -x switch on the MONICE invocation line.

Reset_At_Load on, off on

This option is set on by default so that a processor reset occurs before program download.

Semi_Hosting_Enabled on, off on

Set this option to on to enable system calls like (open, close, read, write) from your program to be serviced via the debugger.

NOTE: This feature should be disabled when debugging ARM code that begins at address 0.

Semi_Hosting_Vector 0x8 (the SWI vector)

Word-aligned address to be trapped for ARM semihosting I/O calls. When set to 0x8, semihosting is called by the SWI
instruction.

Option Valid values Default
MAJIC User’s Manual 0380-0163-10 Rev 2.01 163

B Configuration Options
Serial_Speed 0 - 7 3

Serial communication speed. Set it to the integer that corresponds to the desired baud rate.

0 = 1200
1 = 2400
2 = 4800
3 = 9600
4 = 19000
5 = 38400
6 = 57600
7 = 115200

This option is typically set with the -�0..7� switch on the MONICE or EDBICE invocation line.

Sym_Delta 0xffff 0x0 - 0xffffffff

This option is the maximum offset for symbol+offset display.

Td_Columns 1 - 132 80

This option specifies the number of columns per screen for the trace display.

Td_Rows 10 - 32768 25

This option specifies the number of rows per screen for the trace display.

Top_Of_Memory 0x80000

Word-aligned value used by the ARM semi-hosting library in setting up a stack.

Trace_Active_Probe on, off off

The Trace_Active_Probe controls how the MAJICPLUS probe expects to receive the trace data. It should be on if an
active probe is used for trace acquisition, otherwise it should be off.

Trace_Asid off, on off

The Trace_Asid (ta) configuration option controls whether the MAJIC probe will configure the processor to include
ASID values in the trace data. This option should be enabled only if you are actually using multiple virtual address spaces in
your target program.

Trace_Buffer_Activity none, tracing, waiting, filling,
stopped

none

The Trace_Buffer_Activity (tba) configuration option reports the current activity status of the tracing system.

none Tracing is not enabled and the buffer is empty.

tracing Tracing is underway, with no termination condition.

waiting Conditional trace capture has not begun.

filling Tracing is under way, with a conditional termination condition that has not occurred yet.

stopped Conditional trace capture has completed.

Trace_Enable_Polarity low, high low

The Trace_Enable_Polarity (tep) configuration option controls whether the MAJIC probe’s TRACE ENABLE
(BNC) input is active low or active high. See also options Trace_Gate and Trace_Trigger.

Option Valid values Default
164 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Configuration Options B
Trace_Gate none, external, stall,
ext_or_stall

none

The Trace_Gate (tg) configuration option controls whether trace frame capturing is qualified (gated). Note that gating is
independent of the trigger state, except that selecting the external TRACE ENABLE input as a trigger takes precedence over
using it as a gate. See also options Trace_Enable_Polarity and Trace_Trigger.

none Trace frame acquisition is not qualified.

external Trace frame acquisition is inhibited when MAJIC probe’s TRACE ENABLE (BNC) input is not
asserted.

stall Trace frame acquisition is inhibited after approximately 500 consecutive trace clock cycles with no
execution activity. If execution subsequently resumes, tracing will resume within a few trace clock
cycles.

ext_or_stall Trace frame acquisition is inhibited whenever either the external mode or stall mode would inhibit it.

Trace_Inst16 off, on off

The Trace_Inst16 (ti) configuration option controls whether the MAJIC will attempt to distinguish 16-bit from 32-bit
mode instructions in the trace data. This option should be disabled for best results when tracing 32-bit code. It should be
enabled only if you are actually using 16-bit instructions in your target program.

Trace_Mips16 off, on off

The Trace_Mips16 (tm) configuration option controls whether the MAJIC probe will attempt to identify MIPS16
instructions in the trace data. This option should be disabled for best results when tracing 32-bit code. It should be enabled
only if you are actually using MIPS16 instructions in your target program.

Trace_Real_Time off, on on

The Trace_Real_Time (trt) configuration option controls whether the processor executes at full speed when tracing is
enabled. When enabled, the processor’s trace capability is set to maintain real time performance, which is likely to result in
some loss of trace history. When disabled, the processor’s trace capability is set to stall the processor’s execution of
instructions as necessary to ensure that complete trace history is captured. Not all processors support both modes.

Trace_Trigger auto, external, tpoint,
ext_or_tp

auto

The Trace_Trigger (tt) and Trace_Trigger_Action (tta) configuration options control when the MAJIC probe
starts and stops collecting trace information. Trace_Trigger selects the trigger event:

auto Automatically starts tracing when program execution starts. If the tta option is set to start, tracing stops
when the buffer is full. If tta is set to stop, tracing continues until execution stops.

external Triggers on asserting edge of the TRACE ENABLE (BNC) input.

tpoint Triggers on the first trace point (see Trace Points in EJTAG/PCTrace on page 152).

ext_or_tp Triggers on the first occurrence of a TRACE ENABLE assertion or a trace point.

Trace_Trigger_Action start, stop stop

The Trace_Trigger_Action (tta) configuration option controls what the MAJIC probe does when the trigger event
specified by the Trace_Trigger (tt) option occurs:

start Tracing is started by the trigger event and stops when the trace buffer is full.

stop Tracing starts when execution starts and stops when triggered. If the buffer fills up, older frames are
discarded to make room for newer frames.

Option Valid values Default
MAJIC User’s Manual 0380-0163-10 Rev 2.01 165

B Configuration Options
Trace_Upload_Inst off, on on

The Trace_Upload_Inst (tui) configuration option controls whether executed instructions are included in uploaded
trace data. When enabled, the MAJIC probe fetches all executed instructions from memory and adds them to the trace data.
When disabled, the MAJIC probe still fetches the instructions needed to interpret the trace information, but does not upload
them. This can improve trace upload times if the debugger can fetch the instructions from the executable file instead of
memory, but code executed outside of the executable file can not be disassembled (unless you re-enable this option and
refresh the trace window).

Trace_Upload_Raw off, on off

The Trace_Upload_Raw (tur) configuration option controls whether raw trace data, which includes the mini probe
signals, is uploaded. When disabled, frames in which no instructions were executed are not uploaded to improve trace upload
performance. Such cycles are represented as delta timestamps in the trace display. As a further performance optimization,
the raw trace signals are not uploaded, only the instruction execution history is.

Trgt_Cache_Type unknown, none, unified,
instruction, data, separate

unknown

The Trgt_Cache_Type (tct) configuration option reports the type of primary cache(s) provided by the CPU, if it is
known.

Trgt_Cpu_State run, halt, sleep, doze, off halt

The Trgt_Cpu_State (tcs) configuration option reports the state of the CPU.

Trgt_Dcache_Linesize 0 - 1024 0

The Trgt_Dcache_Linesize (tdl) configuration option reports the size in bytes of each line in the CPU’s primary data
cache, if it is known.

Trgt_Dcache_Memsize 0x0 - 0xffffffff 0x0

The Trgt_Dcache_Memsize (tdm) configuration option reports the size in bytes of the CPU’s primary data cache, if it is
known.

Trgt_Dcache_Sets 0 - 1024 0

The Trgt_Dcache_Sets (tds) configuration option reports the number of sets in the CPU’s primary data cache, if it is
known.

Trgt_Icache_Linesize 0 - 1024 0

The Trgt_Icache_Linesize (til) configuration option reports the size in bytes of each line in the CPU’s primary
instruction or unified cache, if it is known.

Trgt_Icache_Memsize 0x0 - 0xffffffff 0x0

The Trgt_Icache_Memsize (tim) configuration option reports the size in bytes of the CPU’s primary instruction or
unified cache, if it is known.

Trgt_Icache_Sets 0 - 1024 0

The Trgt_Icache_Sets (tis) configuration option reports the number of sets in the CPU’s primary instruction or
unified cache, if it is known.

Option Valid values Default
166 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Configuration Options B
Trgt_Little_Endian on, off off

Setting Trgt_Little_Endian on indicates that your target system has a little-endian memory architecture.

The initial setting of this option can be set with the -l switch on the MONICE invocation line.

Trgt_Resets_Jtag no, yes no

The Trgt_Resets_Jtag (trj) configuration option specifies whether a target system reset also causes JTAG TAP
controller to be reset. Although it is not recommended, some target systems tie these reset signals together. See also options
Ice_Reset_Output and Ice_Jtag_Use_Trst.

Tv_Ip_Address 0.0.0.0 0.0.0.0

The Tv_Ip_Address (tia) configuration option is used to set and display a static (permanent) IP address stored in
non-volatile RAM in the target vehicle (ICE). A value of 0.0.0.0 disables the static IP address and causes the ICE to acquire
its IP address dynamically.

Tv_Ip_Gateway 0.0.0.0 0.0.0.0

The Tv_Ip_Gateway (tig) configuration option is used to set and display a static (permanent) gateway IP address stored
in non-volatile RAM in the target vehicle (ICE). This option and the Tv_Ip_Netmask option should be used if the host
and target are on different subnets and must communicate through a gateway.

Tv_Ip_Netmask 0.0.0.0 0.0.0.0

The Tv_Ip_Netmask (tin) configuration option is used to set and display a static (permanent) subnet mask stored in
non-volatile RAM in the target vehicle (ICE). This option and the Tv_Ip_Gateway option should be used if the host and
target are on different subnets and must communicate through a gateway.

Vector_Catch 0x3b see below

A bit mask specifying that selected exception vectors are to be trapped. Some processors provide special hardware for
trapping these vectors (except for the Error vector at 0x20). For other processors, the selected vectors are trapped by setting
breakpoints. For compatibility, the Vector_Catch bit corresponding to the Error vector may be set, but the Error vector is
not actually trapped. If you require this vector to be trapped, set a breakpoint at 0x20. Note that software breakpoints can only
be set when the vectors are in RAM.

This feature should be disabled when debugging code that begins at address 0.

Option Valid values Default

Bit Value Default Setting Exception Name Exception Vector
Address

0x001 on Reset 0x00

0x002 on Undefined instruction 0x04

0x004 off SWI 0x08

0x008 on Reserved 0x0C

0x010 on Data Abort 0x10

0x020 on Prefetch Abort 0x14

0x040 off IRQ interrupt 0x18

0x080 off FIQ interrupt 0x1C

0x100 off Error 0x20
MAJIC User’s Manual 0380-0163-10 Rev 2.01 167

B Configuration Options
Vector_Load_Low off, target, user target

The Vector_Load_Low option controls how the MAJIC probe manages the low vector table. Usually the MAJIC probe
overlays a 32-byte block of debug memory, called an exception interceptor, over the low vector table memory area. By
default, the MAJIC probe initializes this exception interceptor block from the corresponding physical memory before starting
execution, but the exception interceptor can be initialized to user-defined values, or it can be disabled.

target The low exception interceptor is enabled and initialized from target memory prior to starting execution.

user The low exception interceptor is enabled and initialized to user supplied values prior to starting execution.

off The low exception interceptor is disabled (not recommended).

Vector_Load_High off, target, user off

The Vector_Load_High option controls how the MAJIC probe manages the high vector table. The MAJIC probe can be
set to overlay a 32-byte block of debug memory, called an exception interceptor, over the high vector table memory area. The
exception interceptor block can be initialized from the corresponding physical memory or user-defined values before starting
execution, or it can be disabled. By default, the low vector table is intercepted instead (see Vector_Load_Low above).

target The high exception interceptor is enabled and initialized from target memory prior to starting execution.

user The high exception interceptor is enabled and initialized to user supplied values prior to starting execution.

off The high exception interceptor is disabled.

Option Valid values Default
168 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC User’s Manual 0380-0163-10 Rev 2.01
C
MON Quick Reference
This appendix is a reference for the MON command language, and contains
information on the following topics:

• MONICE command line, below.

• Debug monitor commands, on page 171.

• Debug monitor operands, on page 175.

• Command line editor, on page 176.

• History file, on page 177.

MONICE Command Line
The MONICE debugger is started with the monice command, and can use the
invocation switches listed below.

monice ���-options����� �filename��������

Where:

options is one or more of the options listed in the following table.

filename is the name of a command file to be run (after
startice.cmd). If multiple command files are present
on the invocation line, they are processed in reverse order
(i.e. the last, rightmost file, is processed first).

Options Description

-�0��7� Sets the initial value of the Serial_Speed option (see page 164).
The default is 9600.

Valid serial speeds: 1200, 2400, 4800, 9600, 19.2k, 38.4k, 57.6k,
115.2k. The limit for unix hosts is 38.4k. This limit for PC’s vary,
depending on the processor type, system speed, and serial driver,
but can usually run up to 115.2k.
169

C MON Quick Reference
-d device�:e� Specifies the communication device name.

The device parameter is the serial device name or Ethernet host
name. An Ethernet host name must have “:e” appended to the
end.

NOTES:

• Without :e, device specifies a serial port name such as
COM2 (for a PC) or /dev/ttyb (for UNIX). Appending :e
specifies an ethernet connection, where device is described
in the hosts file on your network server. Refer to Ethernet
Setup on page 9 for more information on Ethernet connections.

• The space between the switch and device is required. There
is no space between device and :e.

-h MONICE switch for displaying help on MONICE invocation
(instead of starting the debugger).

-ni Non-intrusive startup mode. Normal startup mode resets the
processor and clears any breakpoints. Use of -ni allows
connection to a target without losing this target state information.
Also, if the target is currently executing in interactive mode, the
debugger will enter interactive mode and not disturb the running
program.

NOTE: Since the optional breakpoint command lists are not
recorded on the target, they cannot be recovered from the target.
However, your original breakpoint will be recovered with an
empty command list.

-l Specifies the target as Little-endian (-l). This MONICE switch
sets the initial value of the Trgt_Little_Endian option to on
(see page 167).

-q Start monitor in Quiet mode (no loading messages, etc.).

-vh Display the list of CPU types supported by MONICE.

-vX Specifies the processor type (5KC, ARM922T, ...) that is installed in
the probe head. If grouped with other options with a single
“-”, the vX option should be the last in that group.

For a complete list of processors supported by MONICE, use -vh
(but note that the MAJIC probe supports only a subset of these).

NOTE: There must be no space between -v and the processor
type.

-z Start in “stand-alone” mode. Allows usage of the help system and
access to previously saved trace files without being connected to
the MAJIC.

Options Description
170 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Quick Reference C
MON Commands
The following table shows the syntax of the MON commands and identifies those
that are available in each debugger environment. The table uses the following
abbreviations in the Availability field to indicate the debuggers:

MON for MONICE.

M for the MON mode of EDBICE.

EM for the EDB mode of EDBICE.

A for the API libraries that third party debuggers use.

ALL for all debuggers.

Refer to Chapter 5, MON Command Language, on page 71 for complete
information on these commands.

You can use the H command for on-line help (or H H for help on using help).

Availability Command Syntax

MON �+�-�B Enable or Disable Breakpoints

�+�-�B �*�addr ��� �

MON BC Breakpoint Clear

BC �*�addr�

MON BL Breakpoint List
BL

MON BS Breakpoint Set

BS �addr�, �-�pass_cnt�� ��� �{cmd_list}�

MON C Call Stack Summary

C �max_levels�

MON, M, A CF Cache Flush

C�F�I�FI� �I�D�

ALL DA Display Aliases

DA �*�ident�

MON, M, A DB Display or Find Byte

DB�R� �range�, fmt� �=value �# mask��, value��# mask��������� �

MON, M, A DD Display or Find Double Word

DD�R� �range�, fmt� �=value �# mask��, value��# mask��������� �

ALL DF Display Filter

DF � *�filter_list�

MON, M, A DH Display or Find Half-Word

DH�R� �range�, fmt� �=value �# mask��, value��# mask��������� �
MAJIC User’s Manual 0380-0163-10 Rev 2.01 171

C MON Quick Reference
ALL DI Display Information
DI

MON, A DN Display Symbolic Name

DN �*�ident�ident*�

ALL DO Display Option

DO�V� �*�pattern*�cfg_option�

ALL DT Display Trace

DT �?���+�-��count����start��end�����start� L�count��
�,�R�I�D�M��A�R�D�N� ��

MON, M, A DV Display Values, Formatted

DV string�, expr�...

MON, M, A DW Display or Find Word

DW�R� �range�, fmt� �=value �# mask��, value��# mask��������� �

ALL EA Enter Alias
EA ident cmd_list

MON, M, A EB Enter Byte

EB�K� �range��,fmt� = value�, value�����

MON, M, A ED Enter Double Word

ED�K� �range��,fmt� = value�, value�����

MON, M, EM �+�-�EDB Enable, Disable, or Set EDB Command Mode

�+�-�EDB

ALL EF Enter Filter

EF� id� �$ident � filter_clause � & filter_clause�...

MON, M, A EH Enter Half Word

EH�K� �range��,fmt� = value�, value�����

MON, A EN Enter Symbolic Name
EN ident = addr

ALL EO Enter Option
EO cfg_option = value

ALL ETM Enter Trace Mode

ETM �R�I�D�M�

MON, M, A EW Enter Word

EW�K� �range��,fmt� = value�, value�����

ALL �+�-�F Enable or Disable Trace Display Filter

�+F�-F� �*�filter_list�

Availability Command Syntax
172 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Quick Reference C
ALL FR File Read

FR C filename �p_value �����
FR M filename �addr�
FR �RD�TD� filename

ALL FW File Write

FW�O� TD filename
FW�A�O� M filename range

FW�A�O� �C�O� �filename�+�-�

MON G Go

G�I� �=addr� �addr ���� �{�cmd_list�}�

ALL GOTO Go To (used in command files)
GOTO ident

MON, M, A H Help

H �command�op_key�CONTROL�OPS�

MON, M, A IF If

IF expr {then_cmds} �{else_cmds}�

ALL KA Kill Aliases

KA �*�ident�

ALL KF Kill Filter

KF �*�filter_list�

MON, A KN Kill Symbolic Name

KN �*�ident�ident*�

ALL KT Kill Trace Data

�KT�KTD� �Y�

MON, A L Load Program

L ���-�N�O �t�d�b�l�s���filename���� ������

MON, A LN Load Symbolic Names

LN�A�O� �filename� ���

MON, M, A M Move

M�R��B�H�W�D� range, addr

ALL MC Memory Configuration

MC �range �, ��pwe�pwd��dma�jam�inv���� ��� �

MON, M, EM �+�-�MON Enable, Disable, or Set MON Command Mode

�+�-�MON

Availability Command Syntax
MAJIC User’s Manual 0380-0163-10 Rev 2.01 173

C MON Quick Reference
MON, M, A MT Memory Test

MT range�,�1�2�3�4�5�8�9���,�H�V�Q�S��������,repeat_cnt��
MT range,8,delay�,�H�V�Q�S������� �,repeat_cnt��
MT range,�10�11�12��,data � �,repeat_cnt�

MON Q Quit (valid in EDB mode also, but deprecated)

Q �Y�

ALL �+�-�Q Enable or Disable Quiet Mode

�+Q�-Q�

MON, M, A R Reset Processor or Reset Target
R // See ice_reset_output on page 162.

MON, M, A RP Reset Processor
RP

MON, M, A RT Reset Target
RT

ALL �UN�SHIFT Shift Command File Arguments

SHIFT �number��
UNSHIFT �number�*�

MON S Single Step, Step Forward, Step Over

S�F�O��Q�V���=addr� �number���{�cmd_list�}�

MON, M, EM SP Stop Processor (in concurrent debug mode)
SP

ALL �+�-�TE Enable or Disable Trace Execution

�+TE�-TE�

MON, A VL Verify Load

VL � �-�N�O �t�d�b�l�s�� filename ���� ���

MON ! Operating System Shell or Command

! � os_command �

Availability Command Syntax
174 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Quick Reference C
Debug Monitor Operands
Detailed descriptions of each operand listed below is provided in Debug Monitor
Operands on page 124.

addr Address
��number�(expr)��:space��
sym_name
expr

�.�reg_name�.field�
$ident

cmd_list Command List
command �; command� ���

expr Address Expression
�addr�(expr)�expr op expr�unary-op expr�

fmt Format
�d�u�o�x�X�f�e�E�g�G�c�s�i�

ident Identifier
�A��Z�a��z�_ ��A��Z�a��z�0��9�$�_ �. �����

number Constant Number
�0x�0o�0n��digit_string

range Address Range
��addr� �L number��addr addr2�*�:space��

reg_name Register Name
MIPS and ARM Register names are provided on page 135.

space Memory Space
MIPS: �U�0�1�2�3�R�S�XU�XS�XP�XK�P�DA�
ARM: �P�DA�

string ASCII String
"text"
MAJIC User’s Manual 0380-0163-10 Rev 2.01 175

C MON Quick Reference
Command Line Editor
This section describes the keys used to perform command line editing in
MONICE, and the MON console window provided by most of EPI’s debugger
interface libraries. These special keys provide a convenient way to edit command
lines and recall recently entered command lines.

Key Description

<Ins> (Insert) Toggles between Insert and Over-type modes. In Insert
mode, normal characters are inserted at the current cursor position.
In Over-type mode, normal characters replace the character at the
current cursor position. On MS-DOS systems the cursor size
reflects the mode. Insert mode is a half field block, Over-type
mode is an underline. UNIX systems do not support cursor size
changes.

<BS> (Backspace) Deletes the character to the left of the current cursor
position.

 (Delete) Deletes the character at the current cursor position.

<Up> (Up Arrow) Replaces the current line (if any) with the previous
line in the circular buffer.

<Down> (Down Arrow) Replaces the current line (if any) with the next line
in the circular buffer.

<Left> (Left Arrow) Moves the cursor to the left one character.

<Right> (Right Arrow) Moves the cursor to the right one character.

<Home> Moves the cursor to the beginning of the current line.

<End> Moves the cursor to the end of the current line.

<PgUp> (Page Up) Replaces the current line (if any) with the first (oldest)
line in the circular buffer.

<PgDn> (Page Down) Replaces the current line (if any) with the last (most
recent) line in the circular buffer.

<C-PgUp> (Control-Page Up) Deletes the entire contents of the circular
buffer.

<C-PgDn> (Control-Page Down) Deletes the currently selected line (if any)
from the circular buffer.

<Esc> (Escape) Deletes all text from the current line. The circular buffer
is not affected.

<Enter> (Return) Enters the current line as input to MON. The cursor
does not have to be at the end of the line.

<F1> (Function key F1) Entered once, searches the circular buffer for a
line whose beginning matches the text typed so far. The search
starts from the last (most recent) entry in the buffer. If a match is
found, the matching line replaces the current line. If a match is
found, <F1> can be hit again to find the next match for the original
text.
176 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MON Quick Reference C
NOTE: Many Unix consoles have different shell modes which can alter or
filter out the keyboard codes used for command line editing and
history recall. If these keys seem not to perform their function, try
switching to a different mode. Specifically on Sun machines be
sure to use a “shell tool” rather than a “cmd tool.” “Cmd tool”
does not work properly, even with scrolling disabled.

History File
MONICE, EDBICE, and the debugger “back ends” maintain a history file called
startedb.hst that contains the current command history from your last debug
session. This file is read at debugger startup time, and written out upon exiting.

A default (empty) history file is provided in the bin directory with the debuggers.
Typically this is sufficient for most users, but if you are using a shared bin
directory you might want to create your own history file in a private directory. The
private directory must be in the search path for the debugger to find it.

NOTES:

• The history file is maintained in ASCII form and is modifiable with any
text editor.

• If the history file was read from the current working directory when MON
was started, and the current working directory was changed subsequently,
then the history file will not be saved upon exit.

i

i

MAJIC User’s Manual 0380-0163-10 Rev 2.01 177

C MON Quick Reference
178 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC User’s Manual 0380-0163-10 Rev 2.01
D
MAJIC Probe Update
Procedure
This appendix provides information on updating the EDT software package, the
MAJIC probe firmware, and the MAJICPLUS probe Trace Control hardware. EPI
customers with a current Maintenance, Upgrade, and Support (MUS) contract, as
well as those still covered by the original warranty, will receive a notification
whenever updates become available.

Information on the current EDT software release and the MAJIC probe firmware
version is available on the support page of the EPI web site
(www.epitools.com).

Software Update
There are two types of software updates from EPI: a production update and an
engineering update. A production update could be in the form of an EDT update
CD or a zip file with the name edt_rel_xx.zip. An engineering update is a zip
file with a name such as edtxx_spxx.zip.

Production Update
1. Locate the serial number of your software on the label of your original

EDT installation CD. The serial number can also be found in the root
directory of an EDT installation. The serial number is in the file name of
the .sn file. (For example: if the serial number is 654321 then the
filename is 654321.sn).

2. If you have an update CD, insert the CD into your CDROM drive. If the
update program does not start automatically, then start Windows Explorer,
browse to your CDROM drive, and start the update program by double
clicking setup.exe.

If you have the edt_rel_xx.zip file, unzip it to a temporary directory,
and then double click setup.exe to start the installer.

3. Follow the instructions of the update program to install the update.
179

D MAJIC Probe Update Procedure
Engineering Update
1. If you have not already done so, install the EDT software CD or zip file as

instructed above. Make a note of the root directory where you choose to
install the tools.

2. Unzip the update file into the same root directory, making sure to preserve
the directory structure of the files within the zip file. This will update
some of the installed files, and may also install some new files. The new
MAJIC probe firmware image, to be programmed into the MAJIC probe’s
flash memory, will be installed in the root\ice\majic.xyz directory
(where xyz is the firmware version number).

Firmware Update
After performing the appropriate EDT software update, follow these steps to
update the MAJIC probe firmware.

1. Power up the MAJIC probe. You can leave the target system turned off or
disconnected during the update process, or you can connect it normally.
Make sure the Status LED is green before proceeding.

2. Start the MAJIC Setup Wizard from the Programs folder in the Windows
Start menu.

3. Read the information presented, and then click the NEXT button to display
the Choose Operation form, shown below.

4. Select Firmware Update from the Choose Update Type drop-down list,
and click Go.

The MAJIC Firmware Update Installer form appears.
180 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Update Procedure D
5. In the MAJIC Firmware Update Installer form, use the Browse button to
select the location of the update files.

For the firmware included in a production release, browse to
root\ice\majic. For engineering update service packs, browse to
root\ice\majic.xyz where xyz is the firmware version number. The
three files shown in the lower text box should all be present in the selected
directory.

6. Once you have the correct location selected, click NEXT to display the
MAJIC Connection Parameters form.

7. Specify the communication method to be used during the update. If you
select serial, make sure the COM port is not in use by another program,
and that the serial cable is correctly installed. If you select ethernet, make
sure you can ping the MAJIC before proceeding.

For information on setting up the serial or ethernet connection, see to Host
Computer Connections on page 8.

8. Click Update then OK on the Install Update form to begin the update
process. A console window (DOS box) will open to update the MAJIC
firmware using MONICE.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 181

D MAJIC Probe Update Procedure
CAUTION: The Status LED will go RED for several seconds during the
critical stage of the update. DO NOT disturb the MAJIC or console
window while the LED is red. The LED will turn off when it is safe to
proceed.

9. After the Status LED turns off, click OK on the Check Your Installation
Result form and close the console window. If the Status LED does not turn
off, click Cancel and check the console window for errors.

10. After completing the update, power cycle the MAJIC probe so the update
can take effect.

Hardware Update
The MAJICPLUS trace control features described in Chapter 6, Tracing and Trace
Points, on page 141 utilize a programmable logic device (PLD) that monitors the
processor’s trace interface. When switching between processors with different
trace interfaces (e.g. MIPS/PCTrace and ARM/ETM), the PLD must be
reprogrammed.

PLD Version

The PLD version programmed into a MAJICPLUS probe can be identified with the
DI command. The last digit of the Hardware Rev line indicates the trace control
logic that is installed. The possible values are:

!

182 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Update Procedure D
4 - ARM/ETM v4 (passive probe only)

6 - ATM/ETM v6 (active or passive probe)

If any other number is reported, please contact EPI technical support.

Hardware Update Process

To update the MAJIC hardware, follow these steps:

1. Power up the MAJIC probe. You can leave the target system turned off or
disconnected during the update process, or you can connect it normally.
Make sure the Status LED is green before proceeding.

2. Start the MAJIC Setup Wizard from the Programs folder in the Windows
Start menu.

3. Read the information presented, and then click the NEXT button to display
the Choose Operation form, shown below.

4. Select Hardware PLD Update from the Choose Update Type drop-down
list, and click Go.

The MAJIC PLD Update Installer form appears.
MAJIC User’s Manual 0380-0163-10 Rev 2.01 183

D MAJIC Probe Update Procedure
5. In the MAJIC PLD Update Installer form, use the Browse button to select
the location of the update files.

If you are running the setup wizard from EPI’s standard tools installation
tree, you will see the sub-directory ice added. This directory contains
sub-directories with the extension .pld. Browse to the directory you wish to
install files from. If you are installing a non-standard update then please
browse to the location of your update files.

6. Once you have the correct location selected, click NEXT to display the
MAJIC Connection Parameters form.

7. Specify the communication method to be used during the update. If you
select serial, make sure the COM port is not in use by another program,
and that the serial cable is correctly installed. If you select ethernet, make
sure you can ping the MAJIC before proceeding.

For information on setting up the serial or ethernet connection, see to Host
Computer Connections on page 8.

8. Click Update then OK on the Install Update form to begin the update
process. A console window (DOS box) will open to update the Trace
Control PLD using MONICE.
184 0380-0163-10 Rev 2.01 MAJIC User’s Manual

MAJIC Probe Update Procedure D
9. After the Status LED turns off, click OK on the Check Your Installation
Result form and close the console window. If the Status LED does not turn
off, click Cancel and check the console window for errors.

CAUTION: Please cycle power only AFTER instructed to do so. Once the
new hardware has been programmed, the command file will ask you to
cycle power on the MAJIC probe. The command file will automatically
exit the MONICE program. After cycling power, run MONICE again, and
verify the new hardware version number in the sign-on or DI screen.

During the update, the Command Prompt window displays the progress of
the update. The status LED on the front of the MAJIC probe remains red
during the update, and turns off when the update completes successfully.

10. After the update completes and the status LED turns off, power cycle the
MAJIC probe so the update can take effect.

!

MAJIC User’s Manual 0380-0163-10 Rev 2.01 185

D MAJIC Probe Update Procedure
186 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Index
Symbols
!, command 123
$$*, parameter 68, 117
$$0, parameter 68, 117
$$1, parameter 117
$$2, parameter 117
$$n, parameter 67
^BREAK key 64
^C key 64

Numerics
100Base-T 9, 153
10Base-T 9, 153

A
about this manual vii
AC source 6
accessing

memory 34, 44
registers 44

addr operand 125
address 125

expressions 48
offset 125
operand 125
operators 49
space 125
space designator 138

address operands
expr 125
number 125
reg_name 126
space 125

Address Range operand 134
address space designators 138
addresses

classifications of 125
complimented rotating 52
dynamic IP 11
hardware 154
host name 155
IP 154
network 154
reset 163
rotating 52
static IP 9

addresses, classifications of
debugger local 125
register 125

administrator information 156
advanced MAJIC probe configuration 30
ADW 2
alerts ix
Alias commands 65
ARM

addresses 49
register names 136
semi-hosting library 62
trace signals 146

ARP, manual 12
assembler, MIPS mini 47
assigning names 65
At_Go_Command option 159
At_Stop_Command option 159
attaching the MAJIC probe to Ethernet 9
AXD 2

configuring for RealMonitor 29
running via RealMonitor 64

B
B, command 74
basic patterns test 52
MAJIC User’s Manual 0380-0163-10 Rev 2.01 187

Index
BC, command 75
binary files 54
bit fields 46
BL, command 76
BOOTP 12, 156
BREAK key 64
Breakpoint Clear command 75
Breakpoint List command 76
Breakpoint Set command 77
breakpoints

EDB 58
hardware 60
MON 59
software 59

BS, command 77
buffer, trace 141

C
C key 64
C, command 78
cable, serial 8
cabling 6, 153
Cache Flush command 79
Calling_Convention option 78, 159
Calls command 78
cdb.rc 27
CF, command 79
CFI, command 79
checking out the system 12
CI, command 79
cmd_list, operand 128
COFF files 53
combination test 53
command 128

aliases 65
files 67
lists 72
parameters 67

command language, MON 71
command line

editor 176
monice 169

Command List operand 128
COMMON trace signals 146
complimented rotating address 52
concurrent debug mode 63
confidence test 13
configuration

advanced 30
files 22

memory 33
option display 33
options, table 159
process 22
setting options 32
with EDBICE 27
with eXDI, MDI, RDI 28
with MONICE 27
with other debuggers 28
with Tornado 28

configuration options 32
CONNECT LED 13
connections 8

EPI debugger 155
ethernet 155
host computer 8, 155
network 153
power 6
RS232C 8
serial 8
target 6

contacting EPI ix
Cp_Code_Address option 160
custom initialization file 31

D
DA, command 65, 80
data

moving 50
retention capability 52

data width 35
DB, command 45, 81
DD, command 45, 81
debug

environment 15
mode, concurrent 63
monitor commands 72
monitor operand summaries 175
monitor operands 124
services 39
terminal 8

debugger
commands, MON 71, 171
local address 125
local variables 66
operand summaries 175
overview 2
setting the static IP 11
source level 2
symbolic 2
188 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Index
debugging hardware 39
DF, command 83
DH, command 45, 81
DI, command 84
Disable Breakpoints command 74
disassembled trace display 143
Display Alias command 65, 80
Display commands 45

data format 131
Display Configuration Options command 86
Display Data command 81
Display filters command 83
Display Information command 84
Display Names command 85
Display Trace command 87
Display Values command 88
DMA 34
DN, command 65, 85
DO, command 33, 86
DOV, command 33, 86
download performance 55
downloading executable programs 53
Dp_Color option 160
Dp_Color_Backgnd option 160
Dp_Color_Default option 160
Dp_Color_Default_Bgnd option 160
Dp_Color_Err_Msg option 160
Dp_Color_Input option 160
Dp_Color_Output option 160
Dp_Color_Standout option 161
Dp_Color_Use_Ansi option 161
DT, command 87, 142
DTF, command 147
DTN, command 147
DV, command 88
DW (data width) 35
DW, command 45, 81
dynamic IP 11

E
EA, command 65
EB, command 45, 90
ED, command 45, 90
EDB, command mode 92
Edb_Go_Interactive_Mode option 64, 161
Edb_Step_Forward_Mode option 56
EDBICE

configuring via Setup Wizard 16
MAJIC probe configuration 27
starting execution 64

Edit_Insert_Mode option 161
editor, command line 176
EDTA software package 3
EF, command 93
EH, command 45, 90
EJTAG trace signals 145
ELF files 53
emulator, protocols used 156
EN, command 65, 94
Enable Breakpoints command 74
enable, trace 149
endian selection 170
ENET LED 13
engineering update procedure 180
Enter commands 45

data format 131
filling memory and registers 51
interactive mode 46

Enter Data command 90
Enter Filter command 93
Enter Names command 94
Enter Option command 95
Enter Trace Mode command 96
EO, command 31, 95, 149
EPI OS 61
ethernet

attaching the MAJIC probe 9
considerations 153
host name 170
set-up 9, 153

ETM trace signals 146
ETM, command 96, 147
ETN, command 147
EW, command 45, 90
eXDI, MAJIC probe configuration 28
Execute Operating System Shell command 123
execution

program 53
program, starting 64
starting 62

expr operand 129
expr, used in address operand 125
Expression operand 129
expressions, address 48

F
F, command 97
failure message in memory test 51
File Read command 98
File Write command 99
MAJIC User’s Manual 0380-0163-10 Rev 2.01 189

Index
files
command 67
script 67

Find Data command 81
firmware update procedure 180
fmt operand 131
Format operand 131
FR C, command 67
FR, command 98
full trace format 147
FW C, command 67
FW, command 99

G
G, command 64, 101
GDB

configuring via Setup Wizard 17
using in Linux or UNIX 15

getting help ix
getting started 5
Go command 64, 101
GOTO command 68, 102

H
H, command 103
halt-on-error mode 51
handling the system ix
hardware

addresses 154
breakpoints 60
debugging 39
installation 6
update procedure 182

help ix
Help command 103

in MON 72
hex files 54
HIF 61
history file 177
host computer connections 8
host interface functions 61
host name 155

I
Ice_Cache_Rom_Bp option 59, 161
Ice_Debug_Boot option 161
Ice_Jtag_Clock_Delay option 161
Ice_Jtag_Clock_Freq option 55, 161
Ice_Jtag_Tap_Count option 42, 161

Ice_Jtag_Tap_Select option 42, 162
Ice_Jtag_Use_Rtclk option 162
Ice_Jtag_Use_Trst option 41, 162
Ice_Power_Sense option 40, 41, 162
Ice_Reset_Output option 44, 116, 162
Ice_Reset_Peripheral option 44, 162
Ice_Trigger_In option 162
Ice_Trigger_Out option 163
ident operand 132
Identifier operand 132
IF command 69, 104
installation, hardware 6
instruction stepping 56
interactive mode, Enter commands 46
internal peripherals, resetting 44
intrusive startup mode 170
INV 34
invocation switches, MONICE 169
IP address 154

dynamic 11
static 9

J
JAM 34
JTAG

bypass test 13
chain dimensions 41
clock 32
initialization 40
user initialization sequence 42

K
KA, command 65, 105
KF, command 106
Kill Alias command 65, 105
Kill Filter command 106
Kill Names command 107
Kill Trace Data command 108
killing the trace buffer 142
KN, command 65, 107
KT, command 108, 142

L
L, command 109
language, MON 71
LEDs

CONNECT 13
ENET 13
POWER 13
190 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Index
RUN 13
STATUS 13

Linux, using GDB in 15
little-endian 170

targets 167
LN, command 54, 110
Load command 109
Load Names command 110
Load_Absolute_Syms option 163
Load_Entry_Pc option 53, 163
Load_Osboot option 163
local variables, debugger 66
log files 67

M
MAJIC probe

attaching to ethernet 9
models 2
overview 1
update procedure 179

MAJIC Setup Wizard 15
MAJIC_JTAG_DIMENSION 41
MAJIC_JTAG_INIT0 42
MAJIC_JTAG_INIT1 42
manual ARP 12
manual instruction vii
MB, command 111
MC

attributes 35
command 31, 34, 112
display 34
table, sample 36

MD, command 111
MDI, MAJIC probe configuration 28
MDI-compliant Debuggers

configuring via Setup Wizard 17
MDS technology 2
memory

access 34, 44
configuration 33
filling 51
searching 50
test 51

MH, command 111
mini assembler, MIPS 47
mini probe

connecting 7
traced signals 146

MIPS
addresses 49

mini assembler 47
register names 135

mode bits 51
halt-on-error 51
quiet 51
silent 51
verbose 51

models, MAJIC probe 2
modes

halt-on-error 51
quiet 51, 58
raw 144
silent 51
step forward 56
stepping over calls 57

MON
command language 71
command mode 92
command summary 171
help 72

MON> prompt 128
MONICE

command line 169
configuring via Setup Wizard 16
debugger commands 171
invocation switches 169
MAJIC probe configuration 27
starting execution 64

Move command 111
Move Reverse command 111
moving data 50
MT, command 51
multi-stepping 58
MW, command 111

N
names, assigning 65
network

addresses 154
cables 154
cabling 153
connections 153
considerations 153

networking protocol 156
notational conventions viii
number operand 133
number, used in addr operand 125
NVRAM 156
MAJIC User’s Manual 0380-0163-10 Rev 2.01 191

Index
O
offset 125
operand summaries 175
operating system, EPI 61
operations 39
os_command 123
oscilloscope loops 53
overview

debugger 2
MAJIC probe 1

P
parameters, command file 67
partial word access 34, 52
pass counts 58
PC network considerations 156
PCTrace trace signals 145
performance, downloading 55
Platform Builder,

configuring via Setup Wizard 16
PLD version 182
power

connections 6
requirements 6
source 6
target management 40

power-on
reset 40
self test 12

predefined spaces
for ARM and XScale 25
for MIPS 26

probe, connecting 7
processor.rd 22, 28
production update procedure 179
program downloading 53
program execution 53, 64

starting 62, 64
program.rc 28
protocols used by emulator 156
PWD 34
PWE 34

Q
Q, command 114
quiet

command playback 70
memory test 51
mode 51, 58, 170

stepping 58
Quiet mode commands (+Q, -Q) 70, 115
Quit command 114

R
R, command 116
range operand 134
RARP 11, 156
raw mode 144
raw trace display 144
RDI, MAJIC probe configuration 28
RDIMAJIC 29
read-only 35
RealMonitor 29, 63
refresh test 52
reg_name operand 135
register access 44
register definition file 23

sample 26
Register Name operand 135
registers

accessing 44
filling 51

reset
address 163
vector override 163

Reset command 116
reset management 43, 163
Reset Processor 44
Reset Target 44
Reset_Address option 43, 53, 116, 163
Reset_At_Load option 53, 163
resetting

internal peripherals 44
target system 44

RO 35
rotating address 52
RP, command 116
RS232C connection 8
RT, command 116
RW 35

S
S, command 118
saving a session log 67
script files 67
searching memory 50
self test 12
Semi_Hosting_Enabled option 62, 163
Semi_Hosting_Vector option 163
192 0380-0163-10 Rev 2.01 MAJIC User’s Manual

Index
semi_hosting_vector option 163
semi-hosting 61
serial connection 8

using to set static IP 11
serial device name 170
Serial_Speed option 164, 169
servicing the MAJIC probe ix
session log 67
setting

configuration options 32
MC attributes 35

Setup Wizard 15
choosing your debugger 15
setting the static IP 9
specifying processor and connection type 18
specifying your config files’ location 19
specifying your connection type 18
verifying your target interface properties 19

set-up, ethernet 9, 153
SF, command 118
Shift command 68, 117
silent mode 51
single stepping 55, 56
SO, command 118
software

breakpoints 59
update 179

source level debugger 2
source stepping with EDB 56
SP, command 120
space

designators 138
memory address 125
of address 125
operand 138

space names
for ARM and XScale 25
for MIPS 26

SQ, command 58, 118
stand alone mode 170
startedb.hst 177
startice.cmd 28, 29, 31, 169
starting

execution 62, 64
program execution 64

static IP 9
setting via MAJIC Setup Wizard 9
setting via the debugger 11

Step command 118
step command list in MONICE 57

step forward mode 56
stepping over calls 56, 57
stepping through a program 56
Stop command 120
string

literal 140
operand 140

SV, command 58, 118
Sym_Delta option 78, 164
symbolic debugger 2
syntax descriptions viii
system

administrator information 156
check-out 12
configuration 15
handling ix
unpacking ix

T
target

connections 6
interface properties form 19
power management 40

TCP/IP 154, 156
Td_Columns option 164
Td_Rows option 164
TE, command 121, 149
technical support ix
terminal for debugging 8
tests

basic patterns 52
combination 53
memory 51
oscilloscope loops 53
power-on 12
refresh 52
self-test 12
walking ones and zeros 52

TF, command 147
time stamp 144
Top_Of_Memory option 62, 164
Tornado

MAJIC probe configuration 28
MAJIC probe support 17

trace
buffer 141
buffer, killing 142
enable 149
points 152
signals 145
MAJIC User’s Manual 0380-0163-10 Rev 2.01 193

Index
triggers 149
trace display

disassembled 143
files 148
raw 144

TRACE ENABLE 8
Trace_Active_Probe option 164
Trace_Asid option 164
Trace_Buffer_Activity option 164
Trace_Enable_Polarity option 150, 151, 164
Trace_Gate option 151, 165
Trace_Inst16 option 165
Trace_Mips16 option 165
Trace_Real_Time option 165
Trace_Trigger option 150, 165
Trace_Trigger_Action option 150, 165
Trace_Upload_Inst option 166
Trace_Upload_Raw option 144, 145, 166
traced signals 145
tracing 141
Trgt_Cache_Type option 166
Trgt_Cpu_State option 166
Trgt_Dcache_Linesize option 166
Trgt_Dcache_Memsize option 166
Trgt_Dcache_Sets option 166
Trgt_Icache_Linesize option 166
Trgt_Icache_Memsize option 166
Trgt_Icache_Sets option 166
Trgt_Little_Endian option 167, 170
Trgt_Resets_Jtag option 41, 44, 167
TRIG IN 8, 62
TRIG OUT 8, 60, 61
triggers 8
Tv_Ip_Address option 156, 167
Tv_Ip_Gateway option 156, 167
Tv_Ip_Netmask option 156, 167

U
UDP/IP 156
UNIX, using GDB in 15
unpacking the system ix, 5
Unshift command 68, 117
updating

firmware 180
hardware 182
MAJIC probe 179
software 179

user JTAG initialization 42

V
Vector_Catch option 62, 167
Vector_Load_High option 168
Vector_Load_Low option 168
verbose

memory test 51
stepping 58

Verify Load command 122
virtual address segments, MIPS 49
VL, command 122

W
walking ones and zeros test 52
194 0380-0163-10 Rev 2.01 MAJIC User’s Manual

	Contents
	About this Manual
	How to Use This Manual
	Notational Conventions
	Alerts
	Service
	Getting Help

	Overview
	What is the MAJIC Probe?
	The MAJIC Probe Models

	What is a Debugger?

	Getting Started
	Unpacking the System
	Hardware Installation
	Power Connection
	Target Connection
	Cable Kits
	Mini Probe
	Triggers

	Host Computer Connections
	Serial Connection
	Ethernet Setup

	System Check-out
	Power-on Self-Test
	JTAG Bypass Test
	Confidence Test

	Debug Environment
	Using the Setup Wizard
	Choose Your Debugger
	Specify Your Project Name
	Specify Your Processor
	Specify Your Connection Type
	Specify Your Configuration Files’ Location
	Specify Your Destination or Reference Directory
	Perform the Setup

	Configuration Process
	Configuration Files
	File Search Order
	Startice Command File
	Register Definition File

	Configuration with MONICE
	Configuration with EDBICE
	Configuration with Tornado
	Configuration with Other Debuggers
	Configuring AXD for RealMonitor through RDIMAJIC

	Advanced MAJIC Probe Configuration
	Custom Initialization File
	Configuration Options
	Setting Configuration Options
	Configuration Option Display

	Memory Configuration
	MC Display
	MC Attributes Table
	Setting MC Attributes
	Sample MC Table

	MAJIC Probe Debug Services
	JTAG Interface
	Target Power Management
	JTAG Initialization
	JTAG Reset
	JTAG Chain Dimensions
	User JTAG Initialization
	TAP Selection

	Reset Management
	Reset Processor vs. Reset Target
	Resetting Internal Peripherals

	Accessing Memory and Registers
	Display and Enter
	Bit Fields
	Interactive Mode
	MIPS Mini Assembler

	Address Expressions
	ARM Addresses
	MIPS Addresses
	Address Operators

	Searching Memory
	Moving Data
	Filling Memory and Registers
	Memory Test

	Program Execution
	Downloading Executable Programs
	ELF and COFF Files
	Hex and Binary Files
	Download Performance

	Single Stepping
	Source Stepping with EDB
	Instruction Stepping
	Step Forward Mode
	Stepping Over Calls
	Step Command List in MONICE
	Multi-stepping with MONICE

	Breakpoints
	Pass Counts
	Software Breakpoints
	Breakpoint Commands in MONICE
	Hardware Breakpoints
	EPI OS and Semi-Hosting

	Starting Execution
	Concurrent Debug Mode
	Starting Execution with MONICE
	Starting Execution with EDBICE

	Advanced Topics
	Assigning Names
	Command Aliases
	Debugger Local Variables
	Formatted Display
	Saving a Session Log
	Command (script) Files
	Command Parameters
	Shift/Unshift Commands
	GOTO Command
	If Command
	+/-Q

	MON Command Language
	MON Command Basics
	Debug Monitor Commands
	Debug Monitor Operands

	Tracing and Trace Points
	Trace Buffer
	Killing the Trace Buffer
	Trace Display Modes
	Disassembled Trace Display
	Raw Trace Display

	Time Stamp
	MAJICPLUS Probe Trace Inputs
	Trace Display Customization
	Filtered Trace Display
	Searching for Trace Frames

	Trace Display Files

	Trace Control
	Trace Enable
	Trace Triggers
	Trigger Position
	Trigger Event

	Conditional Tracing

	Trace Points
	Trace Points in ARM/ETM
	Trace Points in EJTAG/PCTrace

	Ethernet Considerations
	Considerations for All Networks
	Cabling
	Network Addresses
	Hardware Address
	IP Address
	Host Name

	Making a Connection

	Considerations for PC Networks
	Information for Network Administrators

	Configuration Options
	MON Quick Reference
	MONICE Command Line
	MON Commands
	Debug Monitor Operands
	Command Line Editor
	History File

	MAJIC Probe Update Procedure
	Software Update
	Production Update
	Engineering Update

	Firmware Update
	Hardware Update
	PLD Version
	Hardware Update Process

	Index

