Embedded Performance, Inc.

606 Valley Way, Milpitas, CA 95035
Telephone: (408) 957-0350
FAX: (408)957-0307

. . e-mail: support@epitools.com
Appllcatlon Note web:  www.epitools.com
0380-0194-10 Rev 3.1

Using the EPI Flash Programming Utility

0380-0194-10 Rev 3.1

August 1, 2003




G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Introduction

The EPI Development Tools (EDT) package includes a utility for programming flash memory on a target system. The
EPI Flash programming utility (EPIFlash) is an application which runs on the target system and allows the user to program
and erase the target flash memory device(s) through the JTAG port.

EPIFlash is menu driven, and comes with support for parts using either the Intel or AMD programming algorithms. It is
open-source and can be recompiled with the ARM or GNU tools. Information on EPIFlash can be found in Appendix E of
this application note. The pre-built flash utility must be run from either EDBICE or MONICE (for ARM and XScale
customers AXD may also be used), but the flash utility can NOT be run from an RDI, MDI or eXDI Monitor window.

The information in this manual is intended to provide a step by step guide to running EPIFlash. It documents how to
configure the MAJIC and how to run the utility, along with special notes on good flash programming procedures.

How to Use This Manual

Section 1, Startup Files

Provides an overview of the files required to run MAJIC for standard reference boards and proprietary targets.
Section 2, MAJIC Setup Wizard

Provides instructions for running the MAJIC Setup Wizard in order to configure the MAJIC to run with EPIFlash.
Section 3, Configuration under Linux and Solaris

Describes how to configure MAJIC to run EPIFlash under Linux or Solaris.
Section 4, Running EPIFlash

Covers where EPIFlash is, and how to run it.
Appendix A, Trouble Shooting Guide

Provides solutions to run-time issues with EPIFlash.
Appendix B, EPIFlash Release Notes

Outlines the revision history, and feature additions, for EPIFlash.
Appendix C, Standard Reference Boards

Lists the current standard reference boards for which samples files have been created by EPI, as of July 2003.
Appendix D, Menu Descriptions

Provides a complete description of each menu in EPIFlash. Provides detailed information on all parameters and
functionality.

Appendix E, Adding a New Flash Device Type

Describes how to modify the open source code for EPIFlash, in order to add a new flash part that uses either the
AMD or Intel algorithms.

Additional Documentation

Additional documentation for MAJIC can be found in the manuals directory of the EDT installation. Specifically, it is
recommended that users read the MAJIC Quick Start Guide, MAJIC User’s Manual, EDB User’s Manual, and the Using
MAJIC with the Intel XScale Micro-Architecture application note.

August 4, 2003 Page 1



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Getting Support

Please do not hesitate to contact our technical support group if you have any questions or need assistance in configuring
the MAJIC for your system. We recognize that these issues are complex, and are committed to making sure our tools work
well for you. If you find that the flash part that you are using is not currently supported by EPIFlash please contact EPI
technical support to check for updates. Flash parts are added daily, and any Intel or AMD algorithm-based flash part can be
added upon request.

Startup Files

MAJIC depends upon two main sources of information in order to connect to a target -- the startice.cmd file, and the
board initialization file.

The startice.cmd file contains the required options for MAJIC to connect to a specific target. This file can be created by
the MAJIC Setup Wizard, or by hand, and should not include any board specific code.

The board initialization file is target specific, and contains the commands required to initialize the target memory
controller. In the case where boot code has not been written for the target, the initialization file can be used to for board
bring-up and hardware initialization. In the case where boot code has already been written and programmed into flash, the
initialization file is simply a back-up in case the flash is erased or becomes dysfunctional. If the flash is accidentally erased
during programming a memory initialization script may be the only way to bring the board back up (if the flash part is not
socketed). This is because EPIFlash uses the target system RAM to run, and as a temporary storage space for the image to be
programmed to flash, therefore, if RAM is inaccessible the EPIFlash cannot be run.

In the case of standard reference boards (such as the Intel Lubbock), EPI partners with the board manufacturer to create
the target startup files. For proprietary targets an initialization script will need to be created before flash programming can be
completed. More information about creating startup files for proprietary targets can be found in the Creating Startup Files
for MAJIC application note.

Requirements for XScale

EPIFlash can be used with all processors supported by the MAJIC, but, for XScale targets there are special configuration
considerations. XScale targets require different configuration files for programming flash and for debugging an OS kernel or
boot code. The configuration files for debugging an OS kernel will not work for flash programming, and visa versa — if the
wrong sample files are chosen than flash programming will NOT work. Therefore, when selecting sample files do NOT
choose a directory that ends in _mv, _W nce, _vx, and _gnx!

If you are just getting started with an XScale target it is recommended that you review the Using MAJIC with the Intel
XScale Micro-Architecture application note.

August 4, 2003 Page 2



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

MAJIC Setup Wizard

To run EPIFlash under Windows it is necessary to create a shortcut to the debugger, which references the appropriate
startup files. To do this, run the MAJIC Setup Wizard found in the Start menu. For customer that have already created a
shortcut for flash programming as described in the Creating Startup Files for MAJIC application note, this step can be
skipped.

1. Run the MAJIC Setup Wizard found in the St ar t menu under
Start-> Prograns-> EPl Tools - EDTx-> MAJIC Setup W zard.

= Programs AEn EFI Tools - EDTA &% EDE Help

=% Daocuments » % MAIIC Relnotes

b Settings J * MAJIC Setup Wizard
) Search L % EDT Documentation Index
& Help &) EPI'Website

1 Run... 2% exdi Plugin

B shut Down...

|§£5tart

2. At the first screen read the description of the MAJIC Setup Wizard and then select Next .

3. Under Choose your Debugger select EDBI CE, MONI CE or ARM ADS/ AXDand click Go. RDI
Conpl i ant Debuggers, MDI Conpliant Debuggers, Platform Buil der, and GDB cannot be used for
flash programming.

Choose Operation: |

— Setup a Debug Envirmonment

Chooge pour Debugger: |EDEICE j Go |

EDEBICE & MOMICE

— Update “our MAJC — MOMICE
ARM ADS/AxD

Choose Update Type: | DI Compliant Debugger J
tD1 Compliant Debugger
Platfarm Builder finCE /PocketPC)

— Setup Static 1P Related GDB =

QuIT |

Be sure to select the Go button that is in the Set up a Debug Envi r onnent box. There are three Go buttons on
the screen and each is associated with their own function.

4. Choose a Proj ect NaneandEnter a one |ine description of your project, choose Next.

August 4, 2003 Page 3



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Project Name x|

Enter a project name and description. The project name iz uzed when creating
deskiop zhorteuts to EDB and MOM. Both are added as comment header blocks
when creating startup files command files [startice cmd) and configuration files
[epimdi. cfgfrdimajic. cfgl.

Project Marme: IEF'IFIash

Enter a ohe line description of vour project:
Ilntel [#P425 Richfield Standard Reference Board

<BACK | QuIT | MEXT>

5. Sel ect your Processor Type and Sel ect your Target’'s Endi anness, click Next. Choosing the
incorrect endianess can result in EPIFlash not working!

Select pour Proceszor Type: Select pour Proceszor Type:
%S cale_PHA250 | Scale_[<P425 |
ARMI4EE -
ARMSERE , . .
TiosT Select pour Target's Endianness:
#Scale_B0200 q f o
Eeale o210 " Little Endian
#Scale_Pxa2e0
®Scale_PrAZES _NEXT) <BACK | QuIT | _NEXT)
mScale_PRaZel _l

|#Scale PHAZEZ

AScale 80321
5
AScale_[<P2400
HScale_[xP2800
AScale_[<C1100
pT100 1=
pT110 |

6. Choose your connection type. If it is the first time connecting to MAJIC the Seri al port must be used until an
IP address has been programmed. If Ethernet is being used with a cross-over cable, an IP address must be used rather than a
hostname. For flash programming it is recommended that Ethernet be used -- as it will be significantly faster than a serial
communication. For more information on setting up the IP address see the MAJI C User’ s Manual on page 9.

MAJIC Connection Parameters

— Chooze the method uzed to connect ta your MAIIC

| will be using a seral port to communicate with my MAJIC,

COM Port to uze: IEDM1 "I
Serial Port Speed: |1152I:||:| 'I

| will be using an ethemet hostname to communicate with my MAJIC,

Hostname: |

* | will be uzsing an ethemet |P address to communicate with my MAJIC:

IP &ddress: | 192 0168 . 1 . 100

<BACK | QuIT |

August 4, 2003 Page 4



G Application Note 0380-0194-10 Rev 3.1

Using the EPI Flash Programming Utility

7. In the Configuration Files window choose Use Existing Startup Files. Browse to the samples directory and choose
the sample folder for your reference platform. If there are no sample files for your target see the Creating Startup Files for

MAJIC application note.

Note: For XScale customers, do NOT select a sample folder that has an OS extension, such as_W nce, _vX, nv,or
_qgnx! The settings for an embedded operating system will interfere with flash programming! See Requirements
for XScale at the beginning of this document for more information.

Configuration Files |

startup file that pou already have, choose the first option below and then browse to the desired

@ To uze one of the sample startup files included in the EDT package. or to continue using a
file. Or, wou may choose to create a new startup file if there is no suitable file available.

—{% Use Existing Startup Fil.

Directony: IE: WPoAEFIT oolshedta20bhsampleshizdpd 25

Description found in Startup File [startice. crd):
/4 startice.cmd: Created by MAJIC Setup Wizard version 3.2 ﬂ

## Creation Date: 3/4/2003 15:36:15
£ Project: [<DP425
/# Description: [<DP425 [Richfield) Reference Board j

1" Create New Startup File.

Adjust Default Froperties |

<BACK | auir | NEXT> |

Choose startice.cmd file

Loak in: I Z1 samples

x| & @ ek E-

21|

iq50310 [ Jixdpa2s_my
ig80321 CJixdp425_vx

_lixdpz400 | ixdp425_wince e | oki_ml674000 [Z1 samsun
ca oki_ml&74k Ea sharp_t

" lixdp2400_mv Clixp42s
_lixdpza00_my Clle

[Z mainstone 7]
[:I mainstane_wince [:I
[ oki_ml&71000 Ga

Domaplslﬂ

EE |

pid_7td
pid_94(
pturbo

||

File name: Istartice.cmd

Open I

Files of type: IDebugger Startup File [startice. cmd]

j Cancel |

4

8. On the next screen choose Reference the existing startup files from their location.

Destination or Reference Directory ﬂ

To establish a new debug environment, select the directory in which to create or
copy the startup files. This should normally be wour project's build directory. To
continue using pour existing start up files, or to wn EDT sample programs, choose
"Reference the existing startup files". Whatewer you choose in this farm iz where
the debugager will start when it iz run. Mote that if the directory vou choose does nat
exizt pou will be azked if pou wish ba create it

" Select a Destination Directary to Create/Copy Startup Files to:

I-::\epi Browse |

% Reference the existing startup files from their location:

IE: “PkgEPIT oolzsedtaZ0b\samplestixdpd 25

<BACK. | auUIT |

9. Click Per f or m Act i ons, and then Done.

August 4, 2003

Page 5



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Perform Setup x|
Setup Action: Enabled Completed
Create EDE ShortCut on Desktop v =

<BACK | auIT |

A shortcut for EDB or MONICE should pop up on your desktop. Power up your target and the MAJIC, then double-
click on the desktop shortcut. Verify that you are able to connect to your target board, make sure that you see the message
“JTAG connection established” in red letters. Use this connection in the future for flash programming.

or

monice
Richfield Flash
wia Ethernet

Now that the MAJIC Setup Wizard is complete it is recommended that the startice.cmd file be reviewed for
compatibility with EPIFlash. Samples files do not always default to settings compatible with the flash utility, so it is
important to double check all options in the startice.cmd file. Open the startice.cmd file with a text editor and review the
following options, changing those that do not match these requirements:

Common Target Requirements:

eo sem _hosting_enabled = ON /1 Enabl e Sem hosting support

ARM/XScale Target Requirements:

eo top_of nenory = 0x????0000 /1 top of RAM on target

eo sem _hosting vector = 0x8 /1 Use default vector for Sem hosting
XScale Target Requirements:

eo reset _at | oad = OFF /1 DON T Reset CPU/target at load tine

eo trgt _resets jtag = NO /1 Target reset does not reset JTAG controller

ARM/XScale Recommendation:
eo vector_catch

OxFF /1 Set Vector Catch, break on any exception

MIPS Target Requirements:
eo | oad_osbhoot = OFF /1 don't auto-load osboot.sys along with program

August 4, 2003 Page 6



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Configuration under Linux and Solaris

For Standard Reference Boards where the initialization files are already created, the next step is to place the files in the
appropriate directory under Linux/Solaris. MONICE will look for the startup files in three places; in the current directory, in
the / opt / edt x/ bi n directory, and in the PATH. Therefore, in order for MONICE to find the samples files they must
either be placed in the / opt / edt x/ bi n directory; be in a directory that is on the path, such as the project directory; or
MONICE must be called from the directory that contains the startup files. Once the files are in the appropriate location
MONICE can be called with the appropriate command line options.

For proprietary targets see the Creating Startup Files for MAJIC application note.

August 4, 2003 Page 7



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Running EPIFlash

EPIFlash comes pre-built for MIPS and ARM/Xscale, little Endian and big Endian targets.

For MIPS targets, there are two pre-built Flash Utilities: flashO (for kseg0, located at 0x80000000) and flash! (for
ksegl, located at 0xA0000000). For MIPS targets the pre-built Flash Utility can be found in:

For Little Endian Targets:
...\ EPI Tool s\ edt nR0\ sanpl es\ | e

For Big Endian Targets:
...\ EPI Tool s\ edt n20\ sanpl es\ be

For ARM/XScale targets, the pre-built Flash Utility is built for a number of different target memory (RAM) locations. If
your target system has RAM located at the pre-built memory locations for the Flash Utility, you can use the pre-built utility.
If EPIFlash is not compiled for your specific memory region, contact support@epitools.com for an update. For
ARM/XScale targets, the pre-built Flash Utility is named flash.axf, and can be found in:

For Little Endian Targets:

...\ EPI Tool s\ edt a20\ sanpl es\ | e\ ram 0x00008000
...\ EPI Tool s\ edt a20\ sanpl es\ | e\ ram 0x0C008000
...\ EPI Tool s\ edt a20\ sanpl es\ | e\ ram 0xA0008000
...\ EPI Tool s\ edt a20\ sanpl es\ | e\ ram 0xC0008000

For Big Endian Targets:

...\ EPI Tool s\ edt a20\ sanpl es\ be\ ram 0x00008000
...\ EPI Tool s\ edt a20\ sanpl es\ be\ ram 0x0C008000
...\ EPI Tool s\ edt a20\ sanpl es\ be\ ram 0xA0008000
...\ EPI Tool s\ edt a20\ sanpl es\ be\ ram 0xC0008000

EPIFlash is open-source and can be found in:

Flash.c Source:
...\ EPI Tool s\ edt a20\ sanpl es
EPIFlash is loaded and executed from a debugger in the same manor as a user application would be. In this way

EPIFlash is downloaded to the target and executed out of target RAM. EPIFlash then reads the flash image file (the image to
be programmed) into a RAM buffer and program it into the flash device(s).

August 4, 2003 Page 8



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Starting the Debugger

For this example we will use the IXDP425 Richfield board. EPIFlash can be run with EDB under Windows (or the
ARM tools), or MONICE under both Windows and Linux. If running under Windows, start by double clicking on the EDB
or MONICE shortcut created on the desktop by the MAJIC Setup Wizard. If running under Linux, change directories to the
folder that contains the initialization files for the target, in this case the / opt / edt a/ sanpl es/ i xdp425 directory, then
call MONICE:

[root@oot /] cd /opt/edtalsanpl es/ixdp425
[ root @ oot ixdp425] nonice -vixp425 -d denongjich:e

Make sure that the target has started up correctly, and that MAJIC has connected without receiving any connection
errors. A good connection will look like this:

Processing register file: /opt/edtal/bin/arn spaces.rd
Processing register file: /opt/edta/binfarmmgjic.rd

Readi ng conmand history from /opt/edtal/bin/arm startedb. hst
Est abl i shing communi cations with renpote target via denongjicbh..
Connection verified

Target System EPI Majic Probe, Version: 3.2.3, S/N 0210010
Har dwar e Rev: 90: 3: 3: 20

Tar get CPU. | XP425

Et her net : at address 00:80: CF: 00: 14: E5

| P addr ess: 205. 158. 243. 204, Subnet mask: 255.255.255.0
Trace Buffer: 1 frames

Profiler: Not Install ed

Connected via: Ethernet UDP/IP

Devi ce nane: denongj i c5

Target Endian: big

Start Address: 00000000:

EPI-OS (HF): on

Reset Mode: capture

Readi ng conmands from /opt/edtal/sanpl es/i xdp425/startice.cnd
MON> +g // Enter quiet node

Readi ng startice.cnd file

Notification fromthe target:

Target power detected on VREF

Aut o JTAG detection process detected 1 TAP
JTAG connection established

Readi ng i xdp425. cnd

Executing One Tinme Setup Commands
Executing Target Init Conmmands

Fi ni shed readi ng i xdp425. cnd

Fi ni shed reading startice.cnd

Note: For the Richfield target (and most IXP425 boards based upon the Richfield, such as the ADI Coyote target) it is
necessary to run an unlock command script to disable the write-protect on the flash device. This unlock command
has been placed in a script file called flash.cmd, which can be found in the i Xdp425 folder. To read this file in,
and execute the unlock command, type the following on the command line:

MON>fr c¢ flash

A confirmation that the flash device has been unlocked should be printed to the screen:
Enable Wite to Flash Device on | XDP425

Next, pull EPIFlash into the debugger as if it was a program to debug.
Under EDB, do this from the Fi | @ menu by selecting Pr ogr am t o Debug:

August 4, 2003 Page 9



G Application Note 0380-0194-10 Rev 3.1

Using the EPI Flash Programming Utility

File Edit “iew Exec Misc Window Help
Chrl+O

Program to Debug...

Broaram Close

Save Layouk
Restore Layouk

Saye Session Info

1 ZWPkgh.. Aflash, axf

2 filewithextraextralongfiename, axf
3 filewithextraextralongfiename, axf
4 CWPkgy. L Ankv_mt, axf

5 CSBZ26_rom.elf

& WPk, Aflash, axf

Exit

Then browse to the location of the pre-built flash utility. This will be under the EPI Development Tools installation,
typically C: \ Progr am Fi | es\ EPI Tool s\ EDTx. Next choose the correct folder for the target: be for big endian
targets; | e for little endian targets. For ARM and XScale there will be another set of folders; choose the folder that

correlates to the base address of the target’s SDRAM.

Select Program to Debug d | Select Program to Debug d |
Loak in: I 3 samples j & EF Ea- Loak in: I = be j & EF Ed-
|_adi_brh -ig [ ldbpxaz10_wince [ Jeval_7t objs
Ca adi_brb_rw Ga daytona Ca dbpizazso | excal ¢ ram_0x00005000
a2 adi_coyate G daytona_gnx i dbpia2S0_rmy [ greenla rarm_0x0C003000
\_ladi_coyate_mv [Cldbpxaz1n0 [ dbpxaz50_gnx Clareenla ram_0xAQ003000
| ladi_covote_vx [Cldbpxaz10_mv Cldbpxazsn_wince [ lidp_pxe ram_OxC 0003000
[ adi_evh &2 dbpexaZ10_gnx s | ep7ilz s | idp_pxz
e 2
Fils hame: | Open I File hamne: | Open I
Files of type: I ﬂ Cancel | Files of type: I ﬂ Cancel |
A A

Select the flash utility, flash.axf for ARM and XScale targets; flash0 or flashl for MIPS targets, and click Open.

Select Program to Debug

Lok in: |l ram_D<0000S000

edbdemo. axf
----- edbdemo.cdb
edbdemo.rc

nty k. axf
nkv_mt.cdb
nitw _mk.rc

File name:

Iflash.ar:f

Filez of type: I

Open I

- Cancel
b [ Gel |

If asked the location of flash.c, browse back up to the sanpl es directory.

The EDB window should look something like the following:

August 4, 2003

Page 10



G Application Note 0380-0194-10 Rev 3.1

Using the EPI Flash Programming Utility

“%’E‘EDB - C:WPkg'EPIToolsedtazob' samples’ibe’ram_0x00008000% fash.axf - Connect De:
File Edit Yiew Exec Misc ‘Window Help

==l x|

e K|

frulmRial el

Reading izdp425.cmd

Executing One Time Setup Commands
Executing Target Init Commands
Finished reading i=zdp425.cmd
Finished reading startice.cmd
Finished reading cdb.rc

edbice?

edbicer fr o flash

Enable Write to Flash Device on IXDP425
A1l breakpoints deleted

loading C:~Fkg~EPITools edtaZlb samples~be~ram_0x00008000~flash.axf

Entry address set (pc): 00003000
edbice? & main
flash.cmain:4423: {
-
edhice» i fsind M
e Func:i
return: -l
Disassernbled Mode
7 96 3 36 3 9 96 96 3 3636 36 6 3 96 96 36 3696 3 36 36 9 96 36 36 3 3 36 36 9 96 96 36 36 3 36 36 96 3 96 36 36 36 3 36 96 6 3 96 36 36 9 96 96 36 I 96 9 36 96 96 9 6 36 36 36 I W WKL
s * 7
7 96 3 3 3 9 96 96 36 3636 3 36 3 96 96 36 369 3 3 3 96 I A 396 36 36 9 36 96 96 3 96 36 36 3 3 96 96 36 36 36 36 36 36 9 96 36 36 9 36 36 6 9 96 96 36 3 % H 3 K H K 7
int mainivoid)
S_FLASH_OF flash_settings =
FLASH OF _VERSIOH. SN,
sizeof (3_FLASH _O0P). e
/% The Followi are -
DEFaULT FLASH TYPE, =l
® | 7 © L M | Gh
Load | G0 Stop | StepOwer StepInto InstOwer InstInto | Snap
View Execution \Window in Disassembled Mode |Ln 15000, ol 1
Mstart| | A @ E Y S TEE || Genvon..| Pz, | @lepptiste F.. | [@adobepho.,, | Cyarmsscse |[Bepp-cip.. (B slFE  zerem

You can see the source code for EPIFlash displayed it the Execution window at the bottom of the screen.

The debug information for EPIFlash has now been read by the debugger, but the program has not been loaded to the
target. To do that, go to the Exec menu at the top EDB and choose the Load button. Although you can jump ahead by just
hitting the Go button, which will automatically load the file, it is recommended that you perform a Load and a Veri fy
Load the first time you use EPIFlash. Performinga Veri fy Load provides verification that the memory controller was
properly initialized by showing that programs can be loaded into memory (RAM). The Load command is available as an
icon in the execution toolbar, or in the Exec menu. The Veri fy Load button is only available under the Exec menu.
After you have performed a Veri fy Load, run the program by choosing Go through the Exec menu, by clicking the Go

button, or by hitting the F5 key.

|Exec Misc  Window Help |Exec Misc  Window Help

|Exec Misc Window Help

| Restark Restart Restart

(Lo Load

: Werify Load Werify Load
Go F5 G0 F5 &0 FS I
Stap Ctrl+Break Stop Ctrl+Break Stop Ctrl+Break

Source Step Ower F10O
Source Skep Into FS
Source Step Gk

R Ta Eursar

Source Skep Over FLO
Source Skep Into FS
Source Step Gk

Ry Trar (Eursor:

Source Step Ower F10O
Source Skep Into FS
Source Step Gk

R Ta Eursar

Instr Skep Into F?
Inskr Skep Ower  F6

Instr Skep Inko F7
Inskr Step Over  F&

Instr Skep Inko F7
Inskr Step Over  F&

August 4, 2003

Page 11



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Under MONICE load the application into the target by typing the following commands:

MON> | ../ be/ram 0x00008000/ f | ash. axf

| oadi ng / opt/ edtal sanpl es/i xdp425/../be/ram 0x00008000/ f | ash. axf
section be/ram 0 from 00008000 to 000142ff

section be/ramO from 00014300 to 00014d87

section be/ramO from 00014d88 to 0001520f

Entry address set (pc): 00008000
el

00008000: e59f 0034 LDR r0, 0x803C

It is always recommended that you perform a verify load in order to ensure that the target RAM has been correctly
initialized:

MON> vl

checki ng /opt/edtal/ sanpl es/i xdp425/../bel/ ram 0x00008000/ f | ash. axf
section be/ram O from 00008000 to 000142ff

section be/ram 0 from 00014300 to 00014d87

section be/ramO from 00014d88 to 0001520f

Verify succeeded.

Then run the application:
MON> g

In EDB the Program I/O window should now pop up with the user interface; in MON the user interface will print to the
command line.

=i

EFI Flash Programmer w2.1.0

Flash Device : AmZ29F080E =8 IMEG

Devices : 1-Beries  1-Parallel 1-Total
Sector Groups: 1

Sector Count 16

Sector Size 64K

Base Address : 0x00000000

Filename : test.bin
File Length : 0 (Oxz0O0000000)
Image Size : 1048576 (0z00100000)

Image Address: 0x00000000 - Ox0OO0OFFFFF

MAIN MENL

(1) Flash Tvype

(2) Image Filename
(3) Base Address
(4) Image Address
(5) Image Size

(6) Erase Menu

(7) Program Menu

(8) Diagnostic Menu
(9) Flash Device Menu

FPlease select an option:

B

(0) QUIT Program J

Program Input)l - v

August 4, 2003 Page 12



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Configuring Settings

The first time EPIFlash is run it will NOT default to correct settings for the target, each of the options must be
configured. The options can be changed by selecting the menu options Fl ash Type, |mage Fil ename, Base
Addr ess, | mage Address,and | mage Size by their numbers on the command line. Extra options are also
available under the Fl ash Devi ce Menu. As each option is changed the information at the top of the utility will be
updated to reflect the current settings. If, for example, the wrong filename is entered, the previous setting will not change.
Be sure to double check all settings before erasing or programming the flash!

Start by choosing the flash part for your target. You can find out what flash part is on the target by looking in the board
documentation, or just reading the number off of the flash part itself. Selecting the FI ash Type menu, a list of all
available flash types will be printed. If the flash part needed is not in the list, contact support@epitools.com for an update.
The abbreviated list of supported flash parts from the EDT2.0b release looks like this:

Pl ease select an option: 1

FLASH TYPE MENU

1: AnR9LV400BB x8 512K 20: AnR9DL163DT x16 2M
2: AnR9LV400BB x16 512K 21: 28F008B3B  x8 1M
3: AnR9LV800BB x8 1M 22: 28F008B3T  x8 1M
4: AnR29LVBOOBT x8 1M 23: 28F016B3T  x8 2M
5: An29LV800BB x16 1M 24: 28F320B3B  x16 4AM
6: AnmR29LVBOOBT x16 1M 25: 28F640B3B  x16 8M
7: AnR9F040B x8 512K 26: 28F160C3B  x16 2M
8: AnR9F080B  x8 1M 27: 28F160S5 x16 2M
9: An29LV160BB x8 2M 28: 28F320J3 x8 4AM
10: AnR29LV160BT x8 2M 29: 28F320J3 x16 4M
11: AnR9LV160BB x16 2M 30: 28F640J3 x16 8M
12: AnR9LV160BT x16 2M 31: 28F128J3 x16 16M
13: AnR9LV320DT x16 4M 32: 28F256K3 x16 32M
14: AnR9LV641M x16 8M 33: 28F640WL8B x16 8M
15: AnR9LV128M x16 16M 34: 28F640WL8T x16 8M
16: AnR29LV256M x16 32M 35: AT29LV1024 x16 128K
17: An29DL163DB x8 2M 36: SST39LF200A x16 256K
18: An9DL163DB x16 2M 37: SST39LF400A x16 512K
19: AnR9DL163DT x8 2M

Pl ease sel ect your flash type (1..37): 31

Double check that the bus width and flash size are correct for your target. Choosing the wrong bus width can lead to
programming failures farther down the line.

Fl ash Device : 28F128J3 x16 16MEG

After the Fl ash Type, Base Address, and | mage Si ze have been selected all settings should be double
checked in the summary at the top of the session.

Bootloaders

If a bootloader is being programmed the same procedure is used for other images, with one exception. Some
bootloaders are shipped endian-swapped. This will generally be the case if the bootloader was compiled with a little endian
compiler — but the target is currently configured for big endian (or visa-versa). In this case it is necessary to swap the
endianness of the file before programming. This can be done under the (7) Pr ogr am Menu, using the (9) Swap
| mage Endi aness option.

August 4, 2003 Page 13



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

PROGRAM VENU

Program | mage

Erase | mage, Program | nmage, Verify
Erase Device, Program | nage, Verify
Verify | nage Erased

Verify | nmage Progranmed

Fi nd Progranmmed Sections

Find Verify Failed Sections

Backup Fl ash Device (to D sk)

Swap | mage Endi anness

e e

(
(
(
(
(
(
(
(
(
(

o OO~NOOUIRAWN P

Return to Main Menu

~

Pl ease Select an Option: 9

Enter Swap | mage Endi an Qperation:
(1) Swap Endi an: NONE

(2) Swap Endian: 16-Bit

(3) Swap Endian: 32-Bit

Enter 1, 2 or 3:2

Note:  For programming MontaVista bootloaders into big endian targets choose to Swap Endianness by 16-Bits. For
programming WinCE bootloaders into big endian targets choose to Swap Endianess by 32-Bits. The .bin file
should be programmed in for bootloaders — NOT the .nb0 file.

Backing up the Flash Device

If you do not have an original copy of the contents of flash on your local computer it is recommended that you create a
back-up before programming. To do this go to the ( 7) Pr ogr am Menu, then choose option ( 8) Backup Fl ash
Devi ce (To Di sk). You will be prompted for a path and filename where the backup will be stored on your local
computer.

PROGRAM MVENU

Program | mage

Erase I mage, Program | nage, Verify
Erase Device, Program | nage, Verify
Verify | nage Erased

Verify | mage Programred

Fi nd Programed Sections

Find Verify Failed Sections

Backup Fl ash Device (to D sk)

Swap | nage Endi anness

e e e

(
(
(
(
(
(
(
(
(
(

o OO~NOUITRARWN R

~

Return to Main Menu
Pl ease Select an Option: 8

Enter Filenane (Including Path):
/hone/ epi/richfieldinmge. bin

File Exists, Do you wish to Overwite? (Y/ N:y

You Sel ected Backup Flash to Disk, Are You SURE? (Y/N:y

After the image has been backed-up be sure to verify that it has been uploaded successfully. To do this return to the
main menu and change the Fi | enamne to reference the back-up file on the host computer. The Image Si ze of the back-
up file, which will be filled in automatically by EPIFlash, should be equal to the Fi | € Lengt h selected in the last section.
Next, return to the Pr ogr am Menu and choose (5) Verify | mage Programed. If this passes successfully then it
is safe to proceed to the next step.

August 4, 2003 Page 1



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

EPI Flash Programmer v2.1.0
Fl ash Device : 28F128J3 x16 16MEG

Devi ces . 1-Series 1-Parallel 1-Tota
Sector G oups: 1

Sect or Count : 128

Sector Size 128K

Base Address : 0x50000000

Fi | enane . /hone/epi/richfieldi nmage. bin
File Length 4194305 (0x00400000)

| mage Size : 4194305 (0x00400000)

| rage Address: 0x00000000 - 0x00400000

PROGRAM MVENU

(1) Program | nage

(2) Erase Inmmge, Program lnmage, Verify
(3) Erase Device, Program | nmage, Verify
(4) Verify |l mge Erased

(5) Verify lImge Progranmed

(6) Find Programed Sections

(7) Find Verify Failed Sections

(8) Backup Flash Device (to Disk)

(9) Swap | nage Endi anness

(0) Return to Main Menu

Pl ease Select an Option: 5
Verifying Flash | nage..
Fl ash I mage : PASSED

Testing Programming

The next step is to test erasing and programming the flash device — without affecting the current program in memory.
This is recommended as a precaution to avoid accidental erasures of boot code, which can prevent board bring-up if there is
no target initialization script. For this test, find a small area in the flash part that is unused, and attempt erasing and
programming in that unused portion. Functions in the (6) Erase Menu will allow you to find unused areas of memory,
such as (5) Find Erased Sections.

ERASE MENU

(1) Erase Device

(2) Erase Inmmge Sector(s)
(3) Verify Device Erased

(4) Verify Inage Erased

(5) Find Erased Sections

(6) Find Programmed Sections
(0

) Return to Main Menu
Pl ease Select an Option: 5

Enter Erase Section Size (1024 is the mnimum
size to qualify as a section): 1024

August 4, 2003 Page 1



G Application Note 0380-0194-10 Rev 3.1

Using the EPI Flash Programming Utility

Fi nd Erased Sections...

Byt es Erased : Ox0039AE5C (3780188)
First Address: 0x500251A4
Last Address: 0x503BFFFC
Bytes Erased : Ox0003EFFC (258044)
First Address: 0x503C1004
Last Address: O0x503FFFFC

Er ased Sections Found: 2

Take note of the largest erased section found, then change the | mage Addr ess and | nage Si ze to define the
erased section. For example, filling in the | mage Addr ess and | nage Si ze based upon the information above would

look like this:
EPI Flash Programmer v2.1.0
Fl ash Device : 28F128J3 x16 16MEG
Devi ces . 1-Series 1-Parallel 1-Total
Sector G oups: 1
Sect or Count 128
Sector Size 128K
Base Address : 0x50000000
Fi | enane c:\epi\filenane.bin
File Length 4194305 (0x00400000)
| mage Size 3780188 (0Ox0039AE5C)
| mage Address: 0x000251A4 - O0x003BFFFC

Next, use the Program Menu to (2) Erase | nmage,

Program | mage,

and Ver i fy code into the defined area

of memory. After flash programming has been proven successful it is safe(r) to program the entire device.

Programming Flash

To program the new image into flash first double check all setting for the target. Ensure that the Flash Part, Filename,
Base Address, Image Address, and Endianess are all correct. Once this is verified choose the option (2) Erase | nage,

Program | mage, Verify underthe(7) Program Menu.
PROGRAM MENU

Program | mage
Erase I mage, Program | nage, Verify
Erase Device, Program | nage, Verify

Verify | nage Erased

Verify | nage Programred

Fi nd Progranmmed Sections

Find Verify Failed Sections
Backup Fl ash Device (to D sk)
Swap | mage Endi anness

P N o L

(
(
(
(
(
(
(
(
(
(

o OO~NOOUIRWN -

Return to Main Menu

~

Pl ease Select an Option: 2

You Sel ect ed ERASE Devi ce, PROGRAM Verify,

Er asi ng Devi ce. ..
Devi ce Erase - Compl ete

Veri fying Device Erased...

Are You SURE? (Y/N):y

August 4, 2003

Page 1



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Devi ce Erased: PASSED

Pr ogranmm ng Devi ce. ..
Done!

Verifying Flash | nmage...
Fl ash I mage : PASSED

This will be the results displayed when all sections erase, program and verify correctly.

Closing EPIFlash

The last step is to exit EPIFlash — and save the settings. To do this select (0) Return to Mai n Menu, then select
(0) Quit Program By selecting yes to Save Configuration File? (Y/ N), all settings will be remember the
next time EPIFlash is run.

W program 10 Window -0l =l

MATH MENL

(1) Flash Tvpe
) Image Filename B x|
] Base Address
1 Image Address
] Image Size

Process exited normally with status O

] Erase Menu

] Program Menu

] Diagnostic Menu

} Flash Device Menu

[0y QUIT Program

Flease select an option: 0

Save Configuration File? (Y-N):v J
Frograrm Input)l o e
Or under MONICE:

Pl ease select an option: O

Save Configuration File? (Y/N:y

Process exited normally with status 0

__sys_exit+0x10:

00014244 eafffffe B 0x14244 ; __Sys_exit+0x10
MON>

When the Process exited normally with status 0 message appears then the program exited cleanly with
no errors.

August 4, 2003 Page 2



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Appendix A — Trouble Shooting Guide

EPIFlash will not be able to program your target flash device if the Target:
a) Flash Device is non-functional.

b) Memory (RAM) is non-functional.

¢) Flash Device is mapped out by Memory Controller initialization logic.
d) Memory Controller is not initialized.

Some targets require boot code in flash to initialize the memory controller (a command script file will not work), if this
boot code becomes corrupted or erased, you will not be able to load and run EPIFlash.

1. Is there a way to use the JTAG directly to program FLASH? Does EPI support any methods that do not use RAM?

EPI does not support any methods to program JTAG directly, without using RAM. We have looked into this type of
support in the past, but the download speeds for this method are incredibly slow, on the order of 15minutes per Megabyte.
We have no plans to add support for this in the future. Our recommendation is to use a socketed flash part for your
development board in order to work around having non-working RAM.

2. My flash part has random data in it, and I cannot connect to the MAJIC. When I take my flash part out, I can connect
fine. Why?

If there is garbage in the flash device and the processor tries to execute it as instructions, then it could accidentally be
interpreted as instruction code. This can cause the target to lock up. If you erase your flash, take it out, or reprogram it,
these problems will go away. In order to avoid this happening in the future you should map the flash as read only in the MC
table.

3. I am having problems programming flash on the Richfield board (IXDP425), when I try to program the flash utility
seems to hit a breakpoint, and I get an error message in the session window. Any ideas?

Make sure that the EDT2.0b release, and the startup files from the samples/ixdp425 directory, are being used. If so, then
ensure that the script to unlock the flash device is being run. To do this type the following before running the flash utility:

EDB> fr ¢ flash

4. The flash utility seems to be running on the target, but I don't get any feedback from it - i.e., the user interface/
Program I/0 window does not appear... ?

If the Program 1/O window is not popping up - or has no data, then check the following:
a) When you load EPIFlash, do a "verify load". If this comes out with failures then see (f) and (h).

b) Did you use a startice.cmd file from a folder in the samples directory that ends in _wi nce, _vx, _gnx, or _mv? If
you did you need to create a second shortcut that does not use an embedded OS startice.cmd file.

¢)Issem _hosti ng_enabl ed on? Double check this setting in your startice.cmd file. It must be on!

d) Isthe sem _hosti ng_vect or set? This needs to be set equal to 0x8 in the startice.cmd file.

e) Isyourt op_of _menory setting in the startice.cmd file correct? This needs to be pointed at the top of RAM.
f) Is the memory controller being initialized, and is the Flash being set up?

g) Make sure that if you have defined | oad_ent ry_pc in your startice.cmd that you set it equal to yes.

h) If none of these suggestions help try writing to RAM and seeing if this works. You can do this by typing

August 4, 2003 Page 1



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

MON> ew Ox0 = 1,2, 3
To see if the memory changed type:

MON> dw OxO L 4
You can also run the native memory test provided with MAJIC; type the following for more information:

MON> h nt
i) After running through these basics contact support@epitools.com.

5. The Program I/O window pops-up, and I am able to enter my values. But, when I try to erase or program I get
failures...

Common problems why EPIFlash will not be able to erase or program:

a) The flash device is write protected. This can by implemented in either software (like the ixdp425) or with hardware
(such as with a jumper or switch).

b) An incorrect Flash part was selected. To double check look at the writing on the top of the flash device — the flash
type is generally printed on the device.

¢) Anincorrect Bus W dt h was selected in EPIFlash.

d) The flash device Base Addr ess is incorrect. Double check your memory map — this address is virtual, and with
the memory controller initialized.

e) The flash utility Endian is Incorrect. The endianess of the program loaded into the debugger does not match the
endianess of the target. Double check this in your startice.cmd file, or type

MON> do trgt_little_endian
To find out the endianess the target is set to.

f) Semihosting support is not enabled. Double check this in your startice.cmd file, or type

MON> do semni _hosting_enabl ed

g) The top_of memory EO option is Incorrect (ARM and XScale only). Double check this in your startice.cmd file, or
type

MON> do sem _hosting_enabl ed

h) Using sample start-up files from a folder that ends in _WinCE, MV, QNX, or VX (XScale only).

August 4, 2003 Page 2



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Appendix B — EPIFlash Release Notes

NEW TO VERSION 2.1.0
* Find Verify Failed Sections.
* Enhanced Configuration file structure to work with future versions.
* Configuration file has changed, a 2.0.9 or earlier configuration file can not be restored with 2.1.0.

* Fixed problem with erasing image sectors beyond image size.

NEW TO VERSION 2.0.9
* Swap Endianness of Image File.
* Image Size can be set to Current Image Size.
* Fixed problem with saving configuration file.

* Configuration file has changed, a 2.0.8 configuration file can not be restored with 2.0.9.

NEW TO VERSION 2.0.8
* Configuration saved.
* Find Programmed Sections.
* Image File Length displayed.
* Back-up Flash Device to Host Computer.
* Image Size can be set to Image File Length.
* Flash Type Menu Reconfigured to Support more Flash Types.
* Added Support for more than One Flash Device on Bus (in Series).
* Added Support for more than One Flash Device on Bus (in Parallel.).
ALL x16 Devices Supported, now have Support for Devices in Parallel.

NEW TO VERSION 2.0.5

* Find Erased Sections.

NEW TO VERSION 2.0.4
* Added Verify Device Image to Diagnostic Menu.
* User Input Now Be In Hex, K or Meg For Numeric Input (Address or Size).
* Added Support For Two Flash Devices in Parallel.
Note: Not All Devices Supported Support Devices in Parallel.
* Entering values for Base/Image Address or Image Size:

For versions 2.0.0 thru 2.0.3 of the Flash Utility, values entered for Device Fill Value, Base Address or Image Address
are always assumed to be HEX (user did not have to enter a number with a 0x prefix), values entered for Image Size were
always assumed to be decimal (and could not be entered in hex).

August 4, 2003 Page 3



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

With version 2.0.4 or later of the Flash Utility, you may now enter values for Fill Value, Address or Size, in decimal,
hex, K or M (K = 1024, M = 1024K). When entering numbers in M or K format, you may only use decimal values, do not
use the hex numbers A-F or fractions. After Entering a value, you must hit the Enter Key. If you hit the Enter Key without
entering a value, no change will be made to the entry. NOTE: A-F, M, K, and X are not case sensitive.

Examples:
To enter the values for 512K, IMEG, 2MEG, 4.5MEG and 10MEG:
--- 1M 2M --- 10M
512K 1024K 2048K 4608K 10240K
80000X 100000X 200000X 480000X A00000X
0x80000 0x100000 0x200000 0x480000 0xA00000
524288 1048576 2097152 4718592 10485760

Before any operation which will result in the flash device being erased or programmed, you will be prompted with the
operation to be performed, to proceed press y or Y, to cancel press n or N, then press the Enter key.

Example:
You Sel ected ERASE Device, PROGRAM Verify, Are You SURE? (Y/'N):

NEW TO VERSION 2.0.8
* With version 2.0.8 of EPIFlash you can NOW backup your target flash memory to a file on your host computer.

Before erasing or programming you target's flash device, we recommend that you Backup your flash memory, and verify
the contents of flash memory with that of the backup image file. This will allow you to become familiar with the flash utility

and validate that you can verify target flash memory.

August 4, 2003 Page 4



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Appendix C — Standard Reference Boards

A complete list of standard reference boards which have been verified by Embedded Performance Inc., and for which
samples files have been created.

For ARM and XScale Reference boards these are located in the . . . \ EPI Tool s\ edt a20\ sanpl es directory:

Verified XScale Targets:

Sanpl e Fol der Nane CPU Target Board / Reference Platform
Accel ent Systens |nc.
i dp_pxa250 PXA250 PXA250 | DP
ADI Engi neeri ng
adi _brh 80200 BRH
adi _evb 80200 80200EVB
adi _coyote | XP425 Coyot e
I ntel
dayt ona PXA250 Dayt ona
dbpxa210 PXA210 DBPXA210 (Lubbock)
dbpxa250 PXA250 DBPXA250 (Lubbock)
gr eenl ake PXA210 (G eenLake)
i g80310 80200 | @B0310
i 80321 80200 | @B0321
i xdp425 | XP425 | XDP425 (Ri chfiel d)
i Xxp425 | XP425 ( Mat ecunbe- Bahi a)
i xdp2400 | XP2400 | XDP2400
Hybus
x- hyper 250B PXA250 X- Hyper 250B

August 4, 2003 Page 5



G Application Note 0380-0194-10 Rev 3.1

Using the EPI Flash Programming Utility

Verified ARM Targets:

Sanpl e Fol der Name CPU
Altera

excal 922t ARMD22T
ARM

i ntegrator ARMD20T

i ntegrator ARMB46E

i nt egrator ARMDG66E

eval _7tdm ARM/ TDM
ARM EPI

pi d_7tdm ARM/ TDM

pi d_940t ARMBA0T
ATMEL

t hunder _920t ARMB20T
at 91leb40a_7t dm ARM/ TDM

Cogent

ep7312 ARM/ TDM
I

oki _m 671000 ARM/ TDM

oki _m 674000 ARM/ TDM

oki _m 674k ARM/ TDM
Samsung

sansung920 ARMB20T
Shar p

sharp_922t ARMD22T
Tl

omapl510 TI 925T

Target Board / Reference Platform

Excal i bur - EXPA

ARM | nt egr at or
ARM | nt egr at or
ARM | nt egr at or
Eval uat or 7t

PIDwith ARWTDM Core Mdul e
PID with ARMB40T Core Mbdul e

Thunder AT91RMD200- DK
AT91EB40A

CDK238/ EP7312

M.671000
M_674000
M.674K/ 5K

SMDK2400X01 ( S3C2400X)
LH7A400

OVAP1510 EVM

For MIPS targets these are located in the ...\EPITools\edtm20\samples directory:

August 4, 2003

Page 6



G Application Note 0380-0194-10 Rev 3.1

Using the EPI Flash Programming Utility

Verified MIPS Targets:
Sanpl e Fol der

At |

Bro

ati _x220
ati _x225

as
nti_4kc

adcom
bcmB310a
bcnP1101

bcnD4702cpci
bcnD4710ap

bcmd6345r
br oadcom
br oadcom
br oadcom
br oadcom
br oadcom
br oadcom
br oadcom
br oadcom

CARPET

Cen

| DT

LSI

Mal

Pro

car pet

taurus

cent aur us

rc323xx
rc323xx
rc323xx
rc323xx
rc324xx

| si 4102
| si 4102
| si 4102

ta
mal t a

M PS
prom ps

Xilleon220
Xi |l eon225

MT1 4Kc

BCMB310/ A
BCW1101
BCWA702
BCWA710
BCM6345
BCMB352
BCVB352
BCMVB360
BCM3350
BCM3345
BCVB310
BCML100
BCMr100

PR1900

PR1910

RC32364
RC32332
RC32334
RC32355
RC32438

LSl 4102
LSl 4103
LSI 4102/ 3

MT1 5Kc

PR3940

Target Board / Reference Platform

Set Topwonder Xill eon 220
Set Topwonder Xill eon 225

Atl as Board

BCWD3310 QAMLink with 3310 Rev A
BCWD1101 | P Phone

BCWVB4702CPCl

BCVB4710AP

BCWB6345R

BCWB6352SV

BCWVB6352D
BCWVB3360

BCMB3350CLC QAMLI nk Cabl e Modem

BCVD3345

BCWB3310 QAMLi nk wi th BCMB310 Rev B
BCWP1100 | P Phone

CARPET Eval uati on Board

Cent aur us Devel opnent

79S134 Eval uati on Board
79S332/ 334 Eval uati on Board
795332/ 334 Eval uati on Board
79EB355 Eval uati on Board
79EB438 Ref erence Board

LR4102
LR4103
BDVR4102

Mal t a 5Kc

ProM PS PR3940 Prototyping System

August 4, 2003

Page 7



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Appendix D — Menu Descriptions

Flash Device and Image Information

At the top of each menu, Flash Device and Image Information is displayed.
Fl ash Device : 28F640B3B x16 8MEG

Devi ces . 1-Series 1-Parallel 1-Tota
Sector G oups: 2

Sector Count 8 127

Sector Size 8K 64K

Base Address : 0x00000000

Fi | enane : c:\flash\ bi n\boot. bin

File Length 2097152 (0x00200000)

| rage Size : 2097152 (0x00200000)

| mage Address: 0x00000000 - OxOO01FFFFF

In this screen shot, this flash device is a Boot Bottom, 8Meg part with a 16-bit data bus, and has 2 Sector Groups, the 1st
Sector Group consists of 8 - 8K blocks, the 2nd Sector Group consists of 127 - 64K blocks. Devices shows that this device
has been configured for a single Device on the bus.

Fl ash Device : 28F640B3B x32 16MEG

Devi ces : 1-Series 2-Parallel 2-Tota
Sector G oups: 2

Sector Count : 8 127

Sector Size 16K 128K

Base Address : 0x00000000

Fi | enane : c:\flash\bin\boot. bin

File Length 2097152 (0x00200000)

| mage Size : 2097152 (0x00200000)

| mage Address: 0x00000000 - OxOO0l1FFFFF

In this screen shot, Devices shows that this flash device has been configured for a single Device on the bus in Series and
2 Devices on the bus in Parallel. This part is now a Boot Bottom, 16Meg part with a 32-bit data bus, and has 2 Sector
Groups, the 1st Sector Group consists of 8 - 16K blocks, the 2nd Sector Group consists of 127 - 128K blocks.

Flash Device

This is the flash device part type to be erased/programmed/verified, the device bus width, and the size in bytes. Flash
part types which end in a 'B' or 'T" indicate that the part is a Boot Sector/Block type device, as described in SECTOR
GROUPS. The flash device architecture information is also displayed.

Devices

This is the number of flash devices which are on the same bus, and indicates number of devices in Series and in Parallel.
The default value is 1, for both Series and Parallel. If the target has more than 1 device on the bus, then the user must enter
these values from the Flash Device Menu.

Sector Groups

This is the number of Sector Groups in the flash device. A Sector Group is a contiguous section of sectors/blocks of the
same Sector Size. Boot Sector/Block devices will have 2 or more sector groups of different Sector Sizes. Flash part types
which end in 'B' are Boot Bottom devices, and those which end in 'T' are Boot Top devices.

August 4, 2003 Page 8



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Sector Count

This is the number of sectors in a Sector Group of Sector Size. The above screen shot has 2 Sector Groups, the 1st with a
Sector Count of 8, the 2™ with a Sector Count of 127.

Sector Size

This is the size of a sector in bytes. For symmetrical Sector/Block devices all sectors/blocks in the flash device will be
this size, and will have only one Sector Group. For non-symmetrical (Boot) Sector/Block devices each Sector Group will be
of the indicated Sector Size. The above screen shot has 2 Sector Groups, the 1st with a Sector Size of 8K, the 2nd with a
Sector Size of 64K.

Base Address
This is the Base Address of the flash device. This is a virtual address!

Filename

This is the current image filename and path.

File Length

This is the length of the current image file.

Image Size
This is the length of the image file to be programmed into flash.

Image Address

This is the Address where the image is to be programmed into flash. This is an offset from the Base Address!

Main Menu

From the MAIN MENU, you may select the Flash Device Type, Erase Menu, Program Menu, and Diagnostic Menu.
Other Main menu entries allow you to enter an Image Filename, the Base Address of the Flash Device, the Image Address,
and the Image size.

MAI N MENU

(1) Flash Type

(2) Inmage Fil enane
(3) Base Address
(4) | nage Address
(5) Inage Size

(6) Erase Menu

(7) Program Menu
(8) Diagnostic Menu
(9) Flash Device Menu
(0) QUIT Program

August 4, 2003 Page 9



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Flash Type

Selecting Flash Type will display a listing of all supported flash types. Next to each flash device listed, is the bus width
of the device, and the device size in Kbytes or Mbytes. To select the flash device for your target, enter the number next to the
device as shown in the screen shot below. If the flash device on your target is not listed, the source code for the flash utility
is provided so that you may add support for your target's flash device, See: Appendix E. Boot Block/Sector device types will
end with a 'T" or 'B', for Boot Top or Boot Bottom device.

FLASH TYPE MENU

1: AnR9LV400BB x8 512K 18: 28F008B3B  x8 1M
2: AnmR9LV400BB x16 512K 19: 28F008B3T  x8 1M
3: AnR9LV800BB x8 iM 20: 28F016B3T  x8 2M
4: AnR29LVBOOBT x8 1M 21: 28F320B3B  x16 4M
5: An29LV800BB x16 1M 22: 28F640B3B  x16 8M
6: AnmR29LVBOOBT x16 1M 23: 28F160C3B  x16 2M
7: AnR9FO80B  x8 1M 24: 28F160S5 x16 2M
8: AnR9LV160BB x8 2M 25: 28F320J3 X8 4M
9: An29LV160BT x8 2M 26: 28F320J3 x16 4M
10: AnR9LV160BB x16 2M 27: 28F640J3 x16 8M
11: AnR9LV160BT x16 2M 28: 28F128J3 x16 16M
12: AnR9LV320DT x16 4M 29: 28F256K3 x16 32M
13: AnR9LV641M x16 8M 30: 28F640WL8B x16 8M
14: AnR9LV128M x16 16M 31: 28F640WL8T x16 8M
15: AnR9LV256M x16 32M 32: AT29LV1024 x16 128K
16: AnR9DL163DB x8 2M 33: SST39LF400A x16 512K
17: AnR9DL163DB x16 2M

Image Filename

This is the file which is to be programmed into the flash and/or verified with the contents already in the device. When
entering the filename it must include the complete path. The Flash Utility requires that the file type be binary, S-Record file
types are not presently supported.

Base Address

This is the base address of the flash device on the target. The typical base address For ARM and XScale targets is 0x0,
for MIPS it is 0xBFC00000. All data reads and writes to the flash device will be an offset of the base address.

NOTE: Some target boot code and/or memory controller initialization command files will remap flash to an address
other than the power-on (or reset) address. For Example: The Intel Richfield board powers up with flash at address 0x0, but
the EPI ixdp425.cmd command file will initialize the IXP425 memory controller and map RAM to 0x00000000, map Flash
to 0x50000000, and leave the flash device write protected. Therefore, the Base Address setting in the flash utility should be
set to where the flash is moved to.

For targets with more than one flash device: If the flash device configuration is in parallel, then one base address will
address both devices.

If the flash device configuration is in series, then you must enter the number of devices on the target that are in series.
For some devices, some operations will work on image size alone. To select the number of devices that are in series, go to
the "Flash Device Menu" and select "Devices on Bus (In Series)". To program or erase a single device in a multi-device
configuration, select 1 for the number of devices and set the base address to that device, the image size should also be set be
no greater then the single device size.

Image Address

August 4, 2003 Page 10



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

This is the address within the flash device where the image will be programmed and/or the address of the sector/block to
be erased (when using Erase Image Sector(s)). This address must be relative to the base address. For example, if you have a
base address of 0xBFC00000, and a image address of 0x1000, then the Flash Utility will write and/or erase the image
starting at address 0xBFC01000.

Image Size
This is the length in bytes of the image to be programmed. Starting with version 2.0.8 of the flash utility, you will be
prompted to use the length of the image file, or enter in a value for the Image Size.

(4) Keep Inmage Size : 0x00100000
(5) Use File Length : 0x00200000
(6) Enter Image Size.

Enter 4, 5 or 6:

At this prompt, pressing 4 then enter will leave Image Size unchanged, pressing 5 then enter will assign the image file
length to the Image Size, pressing 6, then enter will allow you enter a value for Image Size.

The value entered should be less than or equal to the length of the image file. If you enter a value greater than the image
file size, you will not get program or verify errors, instead you will be notified with the message:

Unexpected End of File.
XXX bytes not Progranmed.
or

xxx bytes not Verified.

Entering a value greater than the image file size allows the user to erase the flash device past the end of the image when
using either:

(2) Erase Image, Program | nage, Verify (1 n PROGRAM MENU)
or

(2) Erase I nmmge Sector(s) (I'n ERASE MENU)

Program Menu
The PROGRAM MENU allows you to Erase, Program, and Verify the file image with the flash memory image.

PROGRAM MVENU

(1) Program | nage

(2) Erase Inmage, Program | nmage, Verify
(3) Erase Device, Programlmage, Verify
(4) Verify lImge Erased

(5) Verify |Imge Progranmed

(6) Find Programed Sections

(7) Find Verify Failed Sections

(8) Backup Flash Device (to Disk)

(9) Swap | nage Endi anness

(0) Return to Main Menu

August 4, 2003 Page 11



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Program Image

This selection will program the flash device with the contents of the Image File. The flash device will be programmed
starting at the Base Address + Image Address for a length of Image Size. After the programming operation is completed, the
image will be verified against the device.

Erase Image, Program Image, Verify
This selection will do the following operations:
1) Erase those sector(s)/block(s) within the flash device which will be programmed with the image.
2) Verify that the erased image sector(s)/block(s) are erased.
3) Program the flash device with the contents of the Image File.

4) Verify that the image was correctly programmed into the device.

Erase Device, Program Image, Verify
This selection will do the following operations:
1) Erase ALL sectors/blocks within the flash device.
2) Verify that ALL sectors/blocks within the flash device are erased.
3) Program the flash device with the contents of the Image File.

4) Verify that the image was correctly programmed into the device.

Verify Image Erased

This selection will Verify only those memory locations which correspond with the image to be programmed within the
flash device are erased.

Verify Image Programmed

This selection will verify the image file contents against the flash device. This operation is independent of the program
operation, and may be used to determine if the image in flash is the same as that in the file. If there are failures, only the first
and last failed address will be displayed along with the total number of bytes which failed. To get the address of each failed
sections, select (7) Find Verify Failed Sections.

Find Programmed Sections

This selection will display those memory locations which are programmed. For more detailed information see: FIND
PROGRAMMED SECTIONS in ERASE MENU.

Find Verify Failed Sections

This selection will verify the image file contents against the flash device and display the memory location for each
section which failed and the number of bytes that failed in each section.

August 4, 2003 Page 12



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Backup Flash Device (To Disk)

This selection will write a image file of the flash device to the host computer. The image of the flash device will start at
the Base Address + Image Address for a length of Image Size (settings used for programming and erasing the flash device
are used). You will be prompted for the image filename with path, if the file exists you will be warned before overwriting.

Swap Image Endianess

This selection will swap the endianness of the image file read from the host. You may select one of three choices, Swap
Endian: NONE, Swap Endian: 16-Bit, or Swap Endian: 32-Bit. Most image files will not need to be endian swapped, this
feature is used to handle the case where a tool generates a binary image file which is not in the same endianness as that of the
target, or in some cases is only endian swapped on 16-bit boundaries. If Swap Image Endian has been selected, the message:
"NOTICE: Image Endianness will be xx-bit Swapped", will appear above all menus, where xx-bit will be 16-bit or 32-bit.

NOTE: Swapping image endianness does not convert an image built for a little endian target to an image for a big
endian target or visa versa.

Erase Menu

The ERASE MENU allows you to erase the flash device and verify that the device is erased.

ERASE MENU

(1) Erase Device

Erase | mage Sector(s)
Verify Device Erased
Verify | nage Erased

Fi nd Erased Sections

Fi nd Programmed Sections

(=} DO WN
R

(
(
(
(
(
(0) Return to Main Menu

Erase Device
This selection will do, in the following order:
1) Erase ALL sectors/blocks within the flash device.
2) Verify that ALL sectors/blocks within the flash device are erased.

Erase Image Sector(s)
This selection will do the following operations:
1) Erase those sectors (or blocks) within the flash device which will be programmed with the image.

2) Verify that the erased image sector(s)/block(s) are erased.

Verify Device Erased

This selection will verify that ALL sectors/blocks within the flash device are erased.

Verify Image Erased

This selection will Verify only those memory locations which correspond with the image to be programmed within the
flash device are erased.

August 4, 2003 Page 13




G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Find Erased Sections

This selection will display those memory locations which are erased, and the length in bytes of each erased section. A
section is determined to be erased when a contiguous section of flash is found to have "Erase Section Size" or more bytes
erased. The logic for finding Erased Sections uses a 32-bit value read from flash and compared with OXFFFFFFFF, because
of this, the minimum size for "Erase Section Size" is 4, and may be entered as decimal, hex, K or M. The last "Erase Section
Size" entered will be displayed and used if no size is entered.

Enter Erase Section Size: 256
(Mninum Size to Qualify as a Section)

Fi nd Erased Sections...

Byt es Erased : OxO00000FE4 (4068)
Fi rst Address: O0x001AF01C
Last Address: O0x001AFFFC
Byt es Erased : 0x00001C54 (7252)
Fi rst Address: O0x001BE3AC
Last Address: 0x001BFFFC

Byt es Erased : 0x0002D7B0 (186288)
Fi rst Address: 0x001D2850
Last Address: O0x001FFFFC

Erased Sections Found: 3

Find Programmed Sections

This selection will display those memory locations which are programmed (NOT erased), and the length in bytes of each
programmed section. A section is determined to be programmed when a contiguous section of flash is found to have "Erase
Section Size" or less bytes erased. See FIND ERASED SECTIONS for more information on "Erase Section Size".

Enter Erase Section Size: 1024
(Mninum Size to Qualify as a Section) 256

Fi nd Programed Sections..

Bytes Found : Ox001AF01C (1765404)
Fi rst Address: 0x00000000
Last Address: 0x001AF018

Bytes Found : OxO0O0O0O0E3AC (58284)
Fi rst Address: 0x001B0000
Last Address: 0x001BE3AS8

Bytes Found : 0x00040000 (262144)
Fi rst Address: 0x001C0000
Last Address: O0x001FFFFC

Programmed Sections Found: 3

Diagnostic Menu

The DIAGNOSTIC MENU allows you to erase, program, verify, fill a flash device, and repeat the operation any number
of times.

DI AGNOSTI C MENU

(1) Fill Device

August 4, 2003 Page 14




G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Fill Sectors
Verify Fill Device
Verify Fill Sectors
Verify | nmage Progranmed
Erase Device, Fill Device, Verify
Erase Device, Fill Sectors, Verify
Erase | mage, Program | nage, Verify
Erase Device, Program | nage, Verify
) Device Fill Value : 0xAA551248
) Repeat Count o1

R O

(2
(3
(4
(5
(6
(7
(8
(9
(1
(1
(0

) Return to Main Menu

Fill Device
This selection will do the following operations:
1) Program the entire flash device with the "Device Fill Value".
2) Verify that the device was correctly programmed with the fill value.

3) Repeat steps 1 and 2, "Repeat Count” times. The device will not be erased.

Fill Sectors
This selection will do the following operations:

1) Program all flash device sectors/blocks with the sector/block number. Each sector will be filled with a 2-byte sector
number, which starts at O for the 1st sector/block, 1 for the 2nd sector/block, ...

2) Verify that each sector/block within the device was correctly programmed with the sector number.

3) Repeat steps 1 and 2, "Repeat Count” times. The device will not be erased.

Verify Device
This selection will do the following operations:
1) Verify that the device was correctly programmed with the fill value.

2) Repeat step 1, "Repeat Count" times. The device will not be erased.

Verify Sectors
This selection will do the following operations:
1) Verify that each sector/block within the device was correctly programmed with the sector number.

2) Repeat step 1, "Repeat Count" times. The device will not be erased.

Verify Image Programmed
This selection will do the following operations:
1) Verify that the image in the flash device is the same as the image file.

2) Repeat step 1, "Repeat Count" times. The device will not be erased.

August 4, 2003 Page 15



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Erase Device, Fill Device, Verify
This selection will do the following operations:
1) Erase ALL sectors/blocks within the flash device.
2) Verify that ALL sectors/blocks within the flash device are erased.
3) Program the entire flash device with the "Device Fill Value".
4) Verify that the device was correctly programmed with the fill value.

5) Repeat steps 1 through 4, "Repeat Count” times.

Erase Device, Fill Sectors, Verify
This selection will do the following operations:
1) Erase ALL sectors/blocks within the flash device.
2) Verify that ALL sectors/blocks within the flash device are erased.

3) Program all flash device sectors/blocks with the sector/block number. Each sector will be filled with a 2-byte sector
number, which starts at O for the 1st sector/block, 1 for the 2nd sector/block, ...

4) Verify that each sector/block within the device was correctly programmed with the sector number.

5) Repeat steps 1 through 4, "Repeat Count" times.

Erase Image, Program Image, Verify
This selection will do the following operations:
1) Erase those sector(s)/block(s) within the flash device which will be programmed with the image.
2) Verify that the erased image sector(s)/block(s) are erased.
3) Program the flash device with the contents of the Image File.
4) Verify that the image was correctly programmed into the device.

5) Repeat steps 1 through 4, "Repeat Count" times.

Erase Device, Program Image, Verify
This selection will do the following operations:
1) Erase ALL sectors/blocks within the flash device.
2) Verify that ALL sectors/blocks within the flash device are erased.
3) Program the flash device with the contents of the Image File.
4) Verify that the image was correctly programmed into the device.

5) Repeat steps 1 through 4, "Repeat Count” times.

August 4, 2003 Page 16



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Device Fill Value

A 32-Bit value used for the Fill Device operation. The default value is: 0xAAS551248. Users may enter any value from
0x0 - OxFFFFFFFF. Any fill value entered which is less than 32-bits will be right justified. Example: A fill value of OxFFF
will be written to flash as 0x00000FFF. With version 2.0.4 or later of the Flash Utility, you may enter values for Fill Value,
in decimal, hex, K or M (See: USER INTERFACE)

Repeat Count

The Number of times to repeat any of the Diagnostic Menu operations.

Flash Device Menu

The FLASH DEVICE MENU allows you to configure the flash utility for the number of devices on the target that are in
series.

FLASH DEVI CE MENU

Fl ash Type

Devi ce Bus Wdth
Devi ce Boot Type
Devices In Series
Devices In Parall el

N

(
(
(
(
(
(

o QR WN R

) Return to Main Menu

Flash Type

Selecting Flash Type will display a listing of all supported flash types. See MAIN MENU: FLASH TYPE for more
information.

Device Bus Width

This Selection Reserved for Future Version.

Device Boot Type

This Selection Reserved for Future Version.

Devices In Series

If the flash device configuration for your target has multiple devices and they are in series, then you must enter the
number of devices on the target which are in series. If your configuration consists of flash devices which are both in series
and in parallel, then each parallel set should be counted as one serial device.

Devices In Parallel

If the flash device configuration for your target has multiple devices and they are in parallel, then you must enter the
number of devices on the target which are in parallel.

August 4, 2003 Page 17



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

Appendix E — Adding a New Flash Device Type

Adding a new flash device type to EPIFlash can be as easy as adding a single simple entry in the flash.c source file.
Many flash devices will be able to reuse the existing Device Functions, if the part you are adding can not, then Device
Functions for Program and Erase will have to be added. In most cases you will be able to find where an existing Device
Function is very similar to the flash device being added, and will require only minor changes to add a new device.

Adding a new device requires that you add or modify a entry in:
FLASH PART_STRUCT fl ash_parts[ ]

Adding a new device MAY require that you add a entry in:

FLASH SECTOR _STRUCT sector _info[ ]
typedef enum SECTOR_| NFO_NDX

The 3 sections are grouped together in the source code and are preceded by:

/* ADD_DEVI CE_PART HERE */
/* ADD_DEVI CE_SECTOR | NFO_HERE */
/* ADD_DEVI CE_SECTOR_| NFO_NDX_HERE */

/* ADD_DEVICE_PART_HERE */

To add a new device, add or modify a entry in the f | ash_part s[] array:
FLASH PART_STRUCT fl ash_parts[] =

{
/1 Flash Bus Size in Sect or Unl ock Bl ock
/1 Device Wdth Bytes Info Index Functi on
{"AnmR29LV400BB", 8, _512K, AnR9LV400BB, NO_BLOCK_LOCK,
/1 Erase Sect or Pr ogram Devi ce
/1 Functi on Functi on

Am erase_sec_cnd2_8, Am programcnmd2_8, 1},
i

FLASH DEVICE - flash_parts| |.name

This is the flash device name, we recommend that it be 11 characters or less in length, but may be any length.

BUS WIDTH - flash_parts[ |.width

This is the device bus width, current support is limited to 8 and 16 bits devices. Prior to version 2.0.8, if your target has
flash devices in parallel, such as 2x16-bit devices, it would be listed here as 32 bits, with version 2.0.8, any supported 16-bit
device can be configured from the Flash Device Menu to be 32-bits (2-x16 devices).

SIZE IN BYTES - flash_parts| ].size

This is the size of the flash device in bytes. The following constants have been defined for this field: 128K, 256K,
_512K, 1IMEG, 2MEG, 4MEG, 8MEG, 16MEG, 32MEG, 64MEG, 128MEG.

August 4, 2003 Page 18



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

SECTOR INFO INDEX - flash_parts[ ].sector_info_ndx

This is the index into the FLASH _SECTOR_STRUCT sector _i nfo[ ] array. The enum SECTOR | NFO_NDX,
has been defined for this field. Additions may need to be made to both enum SECTCOR _| NFO_NDX and
FLASH SECTOR_STRUCT sect or _i nf o[ ], any change to one will require a corresponding change to the other.
Please See flash.c for more detailed information on this subject.

UNLOCK BLOCK FUNCTION - flash_parts| ].unlock_blk_op()

This is a function pointer to a function which will unlock all sectors or blocks on the flash device. If the device does not
support lock and unlock sector/block, then this pointer should set to NO_LOCK ( NULL) .

ERASE SECTOR FUNCTION - flash_parts| |.erase_sec_op()

This is a function pointer to a function which will erase a sector/block on the flash device.

PROGRAM DEVICE FUNCTION - flash_parts[ |.program_op()

This is a function pointer to a function which will program the flash device with a byte write for 8-bit devices, or a word
(short) write for 16-bit devices.

The format of the FLASH PART STRUCT structure is:
t ypedef struct

char *naneg; /1 Name of flash part (Fl ash Devi ce)

i nt wi dt h; /1 Device(s) bus width in bits (Bus Wdth)

ULONG si ze; /1 Flash size in bytes (Size in Bytes)

i nt sect or _i nfo_ndx; /1 Index into sector_info (Sector Info Index)
void (*unlock blk op)(); // Function pointer to: (Unlock Bl ock Function)
void (*erase_sec_op)(); // Function pointer to: (Erase Sector Function)
void (*programop)(); /! Function pointer to: (Program Device Function)

} FLASH _PART_STRUCT,;

NOTE: To add a Device, NO additions are needed to FLASH PART STRUCT;

/* ADD_DEVICE _SECTOR INFO NDX HERE */
To add a new device, add an entry in enum SECTCOR _| NFO_NDX.

These enums are used to index into sect or _i nf o[ ], any additions or deletions to FLASH_SECTOR_STRUCT
sector_info[ ], must be reflected here. These enums are intended to be used in the sector_info ndx field of
FLASH PART_STRUCT fl ash_parts[ ].Any additions or deletions to enum SECTOR_| NFO_NDX must also be
reflected in FLASH_SECTOR_STRUCT sector_info[ ].

typedef enum

RESERVED SECTOR_NDX, //Logic REQU RES that this be the FIRST enum
/llntel - Symmetrical Bl ock Devices

i 28F160S5, /1(S3 Series same as Sb5)

i 28F320S5,

August 4, 2003 Page 19



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

i 28F320J3,
i 28F640J3,
i 28F128J3,
i 28F256K3, /1 (K18 Series sane as K3)

//1ntel - Boot Block Devices

i 28F800B3T, /1 (C3 and W8 Series same as B3)
i 28F800B3B,

i 28F160B3T,

i 28F160B3B,

i 28F320B3T,

i 28F320B3B,

i 28F640B3T,

i 28F640B3B,

/1 AND - Symetrical Sector Devices
AnR9F080B,
AnR9LV641M
AnR9LV128M
AMR9LV256M

// AND - Boot Sector Devices
AnR9LV320DT,
AnR9LV320DB,
AnR9DL163DT,
AnP9DL163DB,
An29LV400BT,
AnR9LV400BB,
AnP9LV800BT,
AnP9LV800BB,
AnP9LV160BT,
AnR9LV160BB

} SECTOR | NFO_NDX:

/* ADD_DEVICE_SECTOR_INFO_HERE */

The FLASH SECTOR _STRUCT sector _i nfo[ ] structure defines the sector/block count and size(s) for those
flash devices that do not have symmetrical sectors/blocks. If the flash device you are adding does not have a sector count
and size which matches one already defined in the Sect or _i nf o[ ] structure, then a new entry for the flash device must
be added.

sector_info[]:
This structure defines the number of sectors/blocks and the size of the sectors/blocks for each flash device type.

Format of sector _info[ ]:

[ Sect or] [ Sector Sector] [ Sector Sector] [ Sector Sector]
[ G oups], [Count Size ], [Count Size ], [Count Size ],

FLASH SECTOR STRUCT sector _info[] =

{
{0 0, 0}, /| RESERVED SECTOR_NDX
/llntel - Symmetrical Bl ock Devices
{ 1, 32, P2_64K }, /1 28F160S5

August 4, 2003 Page 20



G Application Note 0380-0194-10 Rev 3.1

Using the EPI Flash Programming Utility

{ 1, 64, P2 64K}, /1 28F320S5

{ 1, 32, P2 128K }, /1 28F320J3

{ 1, 64, P2_128K }, /1 28F640J33

{ 1, 128, P2 128K }, /1 28F128J3

{ 1, 256, P2 128K }, /1 28F256K3

//1ntel - Boot Bl ock Devices

{ 2, 15, P2 64K, 8, P2 8K }, /1 28F800B3T/ 008

{ 2, 8, P2 8K, 15, P2 64K }, /1 28F800B3B/ 008

{ 2, 31, P2 64K, 8, P2 8K}, /1 28F160B3T/ 016

{ 2, 8, P2_8K, 31, P2_64K }, // 28F160B3B/ 016

{ 2, 63, P2 64K, 8, P2 8K}, /1 28F320B3T

{ 2, 8, P2 8K, 63, P2 64K }, /1 28F320B3B

{ 2, 127, P2_64K, 8, P2 8K}, /1 28F640B3T

{ 2, 8, P2_8K, 127, P2_64K }, /1 28F640B3B

/1 AND - Symetrical Sector Devices

{ 1, 16, P2 64K }, /1 AnrR9F080B

{ 1, 128, P2_64K }, [/ AnRP9LV641M

{ 1, 256, P2 64K }, /1 AnP9LV128M

{ 1, 512, P2 64K }, /1 AnP9LV256M

// AND - Boot Sector Devices

{ 2, 63,P2 64K, 8, P2 8K }, [/ AnR9LV320DT

{ 2, 8, P2 8K, 63, P2 64K }, /1 AnrR9LV320DB

{ 2, 31, P2 64K, 8, P2 8K}, /1 AmR9DL163DT

{ 2, 8 P2_8K, 31, P2 64K }, /1 AnR9DL163DB

{ 4, 7, P2_64K, 1, P2 32K, 2, P2 8K, 1, P2 16K }, /1 AnR9LV400BT
{ 4, 1, P2_16K, 2, P2 8K, 1, P2 32K, 7, P2 64K }, /1 AnrP9LV400BB
{ 4, 15,P2 64K, 1, P2 32K, 2, P2 8K, 1, P2 16K}, /1 Am29LV800BT
{ 4, 1, P2_16K, 2, P2 8K, 1, P2_32K, 15,P2 64K }, /1 AnrR9LV800BB
{ 4, 31,P2 64K, 1, P2 32K, 2, P2 8K, 1, P2 16K }, /1 AnP9LV160BT
{ 4, 1, P2_16K, 2, P2 8K, 1, P2 32K, 31,P2 64K }, /1 AnP9LV160BB

The format of the FLASH _SECTOR_STRUCT structure is:
t ypedef struct
{

i nt sector_count;

i nt sector_size;
} SECTOR_STRUCT;

/1 nunber of contiguous sectors of sector_size
/1 sector size in powers of 2

t ypedef struct
{

int sector_groups;
SECTOR_STRUCT ss[ 8] ;
} FLASH SECTOR _STRUCT;

/1 nunber SECTOR STRUCTS ss[] needed to define device

NOTE: To add a Device, NO additions are needed to FLASH SECTOR_STRUCT or SECTOR_STRUCT.

SECTOR GROUPS - sector_info[ ].sector_groups

This is the number of Sector Groups in the flash device. A Sector Group is a contiguous section of sectors/blocks of the
same Sector Size. Boot Sector/Block devices will have 2 or more sector groups of different Sector Sizes. For example: In the
above listing of FLASH_SECTOR_STRUCT sect or _i nf o[ ] , The Intel 28F008/800B3T device has 2 Sector Groups, the
1st Sector Group consists of 15, 64k blocks, the 2nd Sector Group consists of 8, 8k blocks.

August 4, 2003 Page 21



G Application Note 0380-0194-10 Rev 3.1 Using the EPI Flash Programming Utility

SECTOR COUNT - sector_info[ ].ss[ ].sector_count

This is the number of sectors in a Sector Group of Sector Size. For each Sector Group there must be one Sector Count
and one Sector Size.

SECTOR SIZE - sector_info[ ].ss[ ].sector_size

This is the sector size in units of power of 2. The following constants have been defined for this field: P2 8K, P2 16K,
P2 32K, P2 64K, P2 128K, P2 256K, P2 512K and P2 1MEG. For symmetrical Sector/Block devices, all sectors/blocks
in the flash device will be this size, and will have only one Sector Group. For non-symmetrical (Boot) Sector/Block devices
each Sector Group will be of the indicated Sector Size.

Building EPIFlash

A sample makefile is provided for rebuilding EPIFlash (and all other sample programs) using the EPI compiler tools
CCE-MIPS for MIPS, and the ARM SDT or ADS tools for ARM. You should be able to use any cross compiler package to
rebuild EPIFlash. EPIFlash does not need to be built with debug information enabled (unless you need to debug your
modifications).

Note: flash.c contains single line comments / / , if your compiler does not support single line comments, please contact
support.

Big Endian vs. Little Endian

EPIFlash may be built for either big or little endian. The sample makefile provided has provisions for both, and has
comments on selecting the building endianess.

ARM vs. MIPS

EPIFlash may be built for either ARM or MIPS architecture (with XScale being a member of the ARM architecture).
This will be automatic, and is based on defining ARM or MIPS on the compiler command line, the conditional compilation
statements for ARM and MIPS are then compiled in flash.c.

NOTE: The EPI Flash Utility cannot be built with Microsoft Platform Builder.

August 4, 2003 Page 22



	Introduction
	How to Use This Manual
	Additional Documentation
	Getting Support

	Startup Files
	Requirements for XScale

	MAJIC Setup Wizard
	Configuration under Linux and Solaris
	Running EPIFlash
	Starting the Debugger
	Configuring Settings
	Bootloaders
	Backing up the Flash Device
	Testing Programming
	Programming Flash
	Closing EPIFlash

	Appendix A – Trouble Shooting Guide
	Appendix B – EPIFlash Release Notes
	Appendix C – Standard Reference Boards
	Verified XScale Targets:
	Verified ARM Targets:
	Verified MIPS Targets:

	Appendix D – Menu Descriptions
	Flash Device and Image Information
	Flash Device
	Devices
	Sector Groups
	Sector Count
	Sector Size
	Base Address
	Filename
	File Length
	Image Size
	Image Address

	Main Menu
	Flash Type
	Image Filename
	Base Address
	Image Size

	Program Menu
	Program Image
	Erase Image, Program Image, Verify
	Erase Device, Program Image, Verify
	Verify Image Erased
	Verify Image Programmed
	Find Programmed Sections
	Find Verify Failed Sections
	Backup Flash Device (To Disk)
	Swap Image Endianess

	Erase Menu
	Erase Device
	Erase Image Sector(s)
	Verify Device Erased
	Verify Image Erased
	Find Erased Sections
	Find Programmed Sections

	Diagnostic Menu
	Fill Device
	Fill Sectors
	Verify Device
	Verify Sectors
	Verify Image Programmed
	Erase Device, Fill Device, Verify
	Erase Device, Fill Sectors, Verify
	Erase Image, Program Image, Verify
	Erase Device, Program Image, Verify
	Device Fill Value
	Repeat Count

	Flash Device Menu
	Flash Type
	Device Bus Width
	Device Boot Type
	Devices In Series
	Devices In Parallel


	Appendix E – Adding a New Flash Device Type
	/* ADD_DEVICE_PART_HERE */
	FLASH DEVICE - flash_parts[ ].name
	BUS WIDTH - flash_parts[ ].width
	SIZE IN BYTES - flash_parts[ ].size
	SECTOR INFO INDEX - flash_parts[ ].sector_info_ndx
	UNLOCK BLOCK FUNCTION - flash_parts[ ].unlock_blk_op()
	ERASE SECTOR FUNCTION - flash_parts[ ].erase_sec_op()
	PROGRAM DEVICE FUNCTION - flash_parts[ ].program_op()

	/* ADD_DEVICE_SECTOR_INFO_NDX_HERE */
	/* ADD_DEVICE_SECTOR_INFO_HERE */
	sector_info[]:
	SECTOR GROUPS - sector_info[ ].sector_groups
	SECTOR COUNT - sector_info[ ].ss[ ].sector_count
	SECTOR SIZE - sector_info[ ].ss[ ].sector_size

	Building EPIFlash
	Big Endian vs. Little Endian
	ARM vs. MIPS



